Solvothermal regulation of BiOBr catalyst structure for improved photocatalytic tetracycline degradation

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yue Ding , Jiaou Qi , Weixiong Huang , Ping Chen , Yanglai Hou , Lilin Lu
{"title":"Solvothermal regulation of BiOBr catalyst structure for improved photocatalytic tetracycline degradation","authors":"Yue Ding ,&nbsp;Jiaou Qi ,&nbsp;Weixiong Huang ,&nbsp;Ping Chen ,&nbsp;Yanglai Hou ,&nbsp;Lilin Lu","doi":"10.1016/j.jphotochem.2025.116377","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing charge-separation efficiency and suppressing recombination of photoexcited carriers are the key to photocatalysts. In this work, a novel solvothermal strategy has been developed to regulate the structure of BiOBr catalysts, three BiOBr catalysts are prepared by solvothermal procedure using water, ethanol and ethylene glycol as the solvents, and denoted as BiOBr-W, BiOBr-ET and BiOBr-EG, respectively. Among them, the BiOBr-EG exhibits substantially improved catalytic activity for tetracycline degradation. Catalyst characterizations reveal that the BiOBr-EG possesses high specific surface area, more oxygen vacancies and an electron-rich surface. High photocurrent response and low <span><span>photoluminescence</span><svg><path></path></svg></span> (PL) intensity indicate enhanced charge-separation efficiency and suppressed recombination of photogenerated electron-hole pairs. The low conduction-band potential of BiOBr-EG favors production of superoxide free radicals and tetracycline degradation. This work opens up new opportunities for developing high-performance BiOBr catalysts by structure regulation to improve charge separation efficiency and suppress the recombination of photogenerated electron-hole pairs in photocatalysis.</div></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":"466 ","pages":"Article 116377"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603025001170","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing charge-separation efficiency and suppressing recombination of photoexcited carriers are the key to photocatalysts. In this work, a novel solvothermal strategy has been developed to regulate the structure of BiOBr catalysts, three BiOBr catalysts are prepared by solvothermal procedure using water, ethanol and ethylene glycol as the solvents, and denoted as BiOBr-W, BiOBr-ET and BiOBr-EG, respectively. Among them, the BiOBr-EG exhibits substantially improved catalytic activity for tetracycline degradation. Catalyst characterizations reveal that the BiOBr-EG possesses high specific surface area, more oxygen vacancies and an electron-rich surface. High photocurrent response and low photoluminescence (PL) intensity indicate enhanced charge-separation efficiency and suppressed recombination of photogenerated electron-hole pairs. The low conduction-band potential of BiOBr-EG favors production of superoxide free radicals and tetracycline degradation. This work opens up new opportunities for developing high-performance BiOBr catalysts by structure regulation to improve charge separation efficiency and suppress the recombination of photogenerated electron-hole pairs in photocatalysis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信