Chunbai Xiang , Qihang Ding , Ting Jiang , Yu Liu , Chao Li , Xing Yang , Jia Jia , Jingjing Xiang , Yue Wang , Hui Zhou , Zhiyun Lu , Ping Gong , Jong Seung Kim
{"title":"Reprogrammed glycolysis-induced augmentation of NIR-II excited photodynamic/photothermal therapy","authors":"Chunbai Xiang , Qihang Ding , Ting Jiang , Yu Liu , Chao Li , Xing Yang , Jia Jia , Jingjing Xiang , Yue Wang , Hui Zhou , Zhiyun Lu , Ping Gong , Jong Seung Kim","doi":"10.1016/j.biomaterials.2025.123235","DOIUrl":null,"url":null,"abstract":"<div><div>Small molecule-based multifunctional optical diagnostic materials have garnered considerable interest due to their highly customizable structures, tunable excited-state properties, and remarkable biocompatibility. We herein report the synthesis of a multifaceted photosensitizer, PPQ-CTPA, which exhibits exceptional efficacy in generating Type I reactive oxygen species (ROS) and thermal energy under near-infrared-II (NIR-II, >1000 nm) laser excitation at 1064 nm, thereby combining photodynamic therapy (PDT) and photothermal therapy (PTT) functionalities. To enhance therapeutic efficacy, we engineered lonidamine (LND) by conjugating it with triphenylphosphonium (TPP) cations, producing LND-TPP. This compound inhibits mitochondrial glycolysis and downregulates heat shock protein 90 (HSP 90) levels in a breast cancer mouse model, potentiating both PDT and PTT. For <em>in vivo</em> applications, PPQ-CTPA and LND-TPP are encapsulated within the amphiphilic polymer DSPE–SS–PEG to obtain <strong>PPQ-CTPAL NPs</strong>. In breast cancer cell lines, <strong>PPQ-CTPAL NPs</strong> are decomposed by cellular GSH, simultaneously releasing the dual-functioning photosensitizer PPQ-CTPL and the mitochondria-disrupting agent LND-TPP. Upon 1064 nm laser irradiation, we found that tumor growth in breast cancer mice is effectively restrained by <strong>PPQ-CTPAL NPs</strong>. This work highlights the synergistic integration of PDT, PTT, and chemotherapy facilitated by NIR-II fluorescence, photoacoustic, and photothermal imaging under 1064 nm irradiation, underscoring the clinical potential of multifunctional phototherapeutic agents.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"320 ","pages":"Article 123235"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001541","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Small molecule-based multifunctional optical diagnostic materials have garnered considerable interest due to their highly customizable structures, tunable excited-state properties, and remarkable biocompatibility. We herein report the synthesis of a multifaceted photosensitizer, PPQ-CTPA, which exhibits exceptional efficacy in generating Type I reactive oxygen species (ROS) and thermal energy under near-infrared-II (NIR-II, >1000 nm) laser excitation at 1064 nm, thereby combining photodynamic therapy (PDT) and photothermal therapy (PTT) functionalities. To enhance therapeutic efficacy, we engineered lonidamine (LND) by conjugating it with triphenylphosphonium (TPP) cations, producing LND-TPP. This compound inhibits mitochondrial glycolysis and downregulates heat shock protein 90 (HSP 90) levels in a breast cancer mouse model, potentiating both PDT and PTT. For in vivo applications, PPQ-CTPA and LND-TPP are encapsulated within the amphiphilic polymer DSPE–SS–PEG to obtain PPQ-CTPAL NPs. In breast cancer cell lines, PPQ-CTPAL NPs are decomposed by cellular GSH, simultaneously releasing the dual-functioning photosensitizer PPQ-CTPL and the mitochondria-disrupting agent LND-TPP. Upon 1064 nm laser irradiation, we found that tumor growth in breast cancer mice is effectively restrained by PPQ-CTPAL NPs. This work highlights the synergistic integration of PDT, PTT, and chemotherapy facilitated by NIR-II fluorescence, photoacoustic, and photothermal imaging under 1064 nm irradiation, underscoring the clinical potential of multifunctional phototherapeutic agents.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.