{"title":"Factors affecting preferences between judgmental and algorithmic forecasts: Feedback, guidance and labeling effects","authors":"Nigel Harvey , Shari De Baets","doi":"10.1016/j.ijforecast.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><div>Previous research has shown that people prefer algorithmic to judgmental forecasts in the absence of outcome feedback but judgmental to algorithmic forecasts when feedback is provided. However, all this work has used cue-based forecasting tasks. The opposite pattern of results has been reported for time series forecasting tasks. This reversal could have arisen because cue-based forecasting studies have used preference paradigms whereas the time series forecasting studies have employed advice-taking paradigms. In a first experiment, we show that when a preference paradigm is used in time series forecasting, the difference in the conclusions about the effects of feedback in the two types of forecasting disappears. In a second experiment, we show that provision of guidance showing accuracy of algorithmic and judgmental forecasts can eliminate effects of feedback. Two further experiments reveal how choices between algorithmic and judgmental forecasts are influenced by the way in which those forecasts are labeled.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 532-553"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000797","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Previous research has shown that people prefer algorithmic to judgmental forecasts in the absence of outcome feedback but judgmental to algorithmic forecasts when feedback is provided. However, all this work has used cue-based forecasting tasks. The opposite pattern of results has been reported for time series forecasting tasks. This reversal could have arisen because cue-based forecasting studies have used preference paradigms whereas the time series forecasting studies have employed advice-taking paradigms. In a first experiment, we show that when a preference paradigm is used in time series forecasting, the difference in the conclusions about the effects of feedback in the two types of forecasting disappears. In a second experiment, we show that provision of guidance showing accuracy of algorithmic and judgmental forecasts can eliminate effects of feedback. Two further experiments reveal how choices between algorithmic and judgmental forecasts are influenced by the way in which those forecasts are labeled.
期刊介绍:
The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.