Zilong Zhou , Zhen Wang , Ruishan Cheng , Jiaming Wang
{"title":"Experimental and numerical study on blast-induced rock damage and fragmentation under low temperatures","authors":"Zilong Zhou , Zhen Wang , Ruishan Cheng , Jiaming Wang","doi":"10.1016/j.engfailanal.2025.109497","DOIUrl":null,"url":null,"abstract":"<div><div>Low temperatures in cold regions have significant effects on rock blasting performance, e.g., blast-induced rock fragmentation. However, very limited study has explored the influences of sub-zero temperatures on blast-induced rock response. The present study employs experimental tests and numerical simulation to examine the damage and fragmentation of rock subjected to blasting under low-temperature conditions. The small-scale blasting tests of rocks at room temperature (i.e., 20 °C) and different low temperatures (i.e., from −10°C to −40°C) are first conducted to examine low temperatures’ effects on blast-induced rock fragmentation by using the three-parameter Generalized Extreme Value (GEV) function and the fractal theory. The findings indicate that the average sizes of blast-induced rock fragments first increase and then fall as the rock temperatures drop from 20 °C to − 40 °C, and the least uniform fragment size distribution is presented at −30 °C. Moreover, the numerical models of a full-scale deep borehole are established to examine the effects of different low-temperature gradient characteristics in rock mass on the damage and fragmentation of rocks caused by blasting. It is observed that the blast-induced damage of the multi-gradient low-temperature rock mass first decreases and then increases with rock depths approaching the ground surface. In addition, it is noted that rock damage and fragmentation induced by blasting can significantly differ with changing multi-gradient low-temperature conditions in a rock mass (e.g., different multi-gradient low-temperature ranges, multi-gradient low-temperature depths in rock mass, and numbers of multi-gradient low-temperature layers). The findings can be used as a reference for fine rock blasting design under low-temperature conditions.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"174 ","pages":"Article 109497"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002389","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Low temperatures in cold regions have significant effects on rock blasting performance, e.g., blast-induced rock fragmentation. However, very limited study has explored the influences of sub-zero temperatures on blast-induced rock response. The present study employs experimental tests and numerical simulation to examine the damage and fragmentation of rock subjected to blasting under low-temperature conditions. The small-scale blasting tests of rocks at room temperature (i.e., 20 °C) and different low temperatures (i.e., from −10°C to −40°C) are first conducted to examine low temperatures’ effects on blast-induced rock fragmentation by using the three-parameter Generalized Extreme Value (GEV) function and the fractal theory. The findings indicate that the average sizes of blast-induced rock fragments first increase and then fall as the rock temperatures drop from 20 °C to − 40 °C, and the least uniform fragment size distribution is presented at −30 °C. Moreover, the numerical models of a full-scale deep borehole are established to examine the effects of different low-temperature gradient characteristics in rock mass on the damage and fragmentation of rocks caused by blasting. It is observed that the blast-induced damage of the multi-gradient low-temperature rock mass first decreases and then increases with rock depths approaching the ground surface. In addition, it is noted that rock damage and fragmentation induced by blasting can significantly differ with changing multi-gradient low-temperature conditions in a rock mass (e.g., different multi-gradient low-temperature ranges, multi-gradient low-temperature depths in rock mass, and numbers of multi-gradient low-temperature layers). The findings can be used as a reference for fine rock blasting design under low-temperature conditions.
期刊介绍:
Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies.
Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials.
Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged.
Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.