An approach for interdisciplinary knowledge discovery: Link prediction between topics

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Huo Chaoguang , Han Yueji , Huo Fanfan , Zhang Chenwei
{"title":"An approach for interdisciplinary knowledge discovery: Link prediction between topics","authors":"Huo Chaoguang ,&nbsp;Han Yueji ,&nbsp;Huo Fanfan ,&nbsp;Zhang Chenwei","doi":"10.1016/j.physa.2025.130517","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting interdisciplinary links between topics can unveil potential interdisciplinary knowledge relationships and foster innovation. Considering keywords extracted from interdisciplinary research as topics, we propose a topic link prediction method based on graph neural networks. We emphasize the integration of topic semantic content features, author direct-collaboration features, and indirect-collaboration features to improve prediction performance. The interdisciplinary topic link prediction models are constructed using Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), Graph Sample and Aggregate (GraphSAGE), BERT, and Node2Vec. These models are validated by using digital humanities data as a case study. We find that the integration of semantic content, direct-collaboration, and indirect-collaboration features significantly improved the Area Under the Curve (AUC) by 20.68 % and the Average Precision (AP) by 16.52 %, compared to relying solely on the co-occurrence network. For topic reorganization, we find that the features we designed make more sense than GNN algorithms alone, and that weak relationships contribute more to topic link prediction than strong relationships. Our approach provides valuable research insights and references for scholars engaged in interdisciplinary knowledge. Notably, this is an innovative approach to interdisciplinary knowledge discovery through knowledge reorganization.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"665 ","pages":"Article 130517"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125001694","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting interdisciplinary links between topics can unveil potential interdisciplinary knowledge relationships and foster innovation. Considering keywords extracted from interdisciplinary research as topics, we propose a topic link prediction method based on graph neural networks. We emphasize the integration of topic semantic content features, author direct-collaboration features, and indirect-collaboration features to improve prediction performance. The interdisciplinary topic link prediction models are constructed using Graph Convolutional Networks (GCN), Graph Attention Networks (GAT), Graph Sample and Aggregate (GraphSAGE), BERT, and Node2Vec. These models are validated by using digital humanities data as a case study. We find that the integration of semantic content, direct-collaboration, and indirect-collaboration features significantly improved the Area Under the Curve (AUC) by 20.68 % and the Average Precision (AP) by 16.52 %, compared to relying solely on the co-occurrence network. For topic reorganization, we find that the features we designed make more sense than GNN algorithms alone, and that weak relationships contribute more to topic link prediction than strong relationships. Our approach provides valuable research insights and references for scholars engaged in interdisciplinary knowledge. Notably, this is an innovative approach to interdisciplinary knowledge discovery through knowledge reorganization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信