Guiding supervisors in artificial intelligence-enabled forecasting: Understanding the impacts of salience and detail on decision-making

IF 6.9 2区 经济学 Q1 ECONOMICS
Naghmeh Khosrowabadi , Kai Hoberg , Yun Shin Lee
{"title":"Guiding supervisors in artificial intelligence-enabled forecasting: Understanding the impacts of salience and detail on decision-making","authors":"Naghmeh Khosrowabadi ,&nbsp;Kai Hoberg ,&nbsp;Yun Shin Lee","doi":"10.1016/j.ijforecast.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>In many real-world situations, multiple humans are involved in decision-making when interacting with machine recommendations. We investigated a setting where an artificial intelligence system creates demand forecasts that a human planner can either accept or revise, and a supervisor then makes the final decision about which forecast to select. We designed and conducted two experimental studies to understand decision-making by a supervisor. First, we provided the improvement probabilities of adjustments at an aggregated level and found evidence for overoptimism bias and mean anchoring. Second, we provided decomposed guidance based on two adjustment attributes, direction and magnitude, to investigate the role of salience based on the distance between the improvement probabilities and level of detail in guidance effectiveness. We found no significant difference in using less and more salient guidance provided that the detail level was fixed. However, revealing more details when the guidance was more salient increased the use of guidance.</div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 2","pages":"Pages 716-732"},"PeriodicalIF":6.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000803","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In many real-world situations, multiple humans are involved in decision-making when interacting with machine recommendations. We investigated a setting where an artificial intelligence system creates demand forecasts that a human planner can either accept or revise, and a supervisor then makes the final decision about which forecast to select. We designed and conducted two experimental studies to understand decision-making by a supervisor. First, we provided the improvement probabilities of adjustments at an aggregated level and found evidence for overoptimism bias and mean anchoring. Second, we provided decomposed guidance based on two adjustment attributes, direction and magnitude, to investigate the role of salience based on the distance between the improvement probabilities and level of detail in guidance effectiveness. We found no significant difference in using less and more salient guidance provided that the detail level was fixed. However, revealing more details when the guidance was more salient increased the use of guidance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信