Zihao Jin , Wei Zhang , Zhenyu Yin , Ning Zhang , Xueyu Geng
{"title":"Estimating track geometry irregularities from in-service train accelerations using deep learning","authors":"Zihao Jin , Wei Zhang , Zhenyu Yin , Ning Zhang , Xueyu Geng","doi":"10.1016/j.autcon.2025.106114","DOIUrl":null,"url":null,"abstract":"<div><div>Timely identification of Track Geometry Irregularities (TGIs) is essential for ensuring the safety and comfort of high-speed rail operations. Existing inspection methods rely on costly Track Recording Vehicles (TRVs) and manual trolleys, resulting in infrequent and expensive inspections. This paper proposes a data-driven approach for estimating TGIs using a Convolutional Neural Network with Multi-Head and Multi-Layer Perceptron (CNN-MH-MLP) architecture. A comprehensive vehicle-track-embankment-ground Finite Element (FE) model incorporating geometric wheel-rail nonlinearity is developed to generate the in-service train acceleration data used for training the network. The CNN-MH-MLP network demonstrates strong performance in estimating TGIs, exhibiting robustness to noise. Optimized sensor placement with three sensors achieves the best trade-off between accuracy and efficiency. Furthermore, the network's transferability highlights the significance of detailed numerical models in producing virtual databases. This work is expected to facilitate the development of intelligent systems for real-time TGI monitoring, improving inspection efficiency and reducing labor costs.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"173 ","pages":"Article 106114"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001542","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Timely identification of Track Geometry Irregularities (TGIs) is essential for ensuring the safety and comfort of high-speed rail operations. Existing inspection methods rely on costly Track Recording Vehicles (TRVs) and manual trolleys, resulting in infrequent and expensive inspections. This paper proposes a data-driven approach for estimating TGIs using a Convolutional Neural Network with Multi-Head and Multi-Layer Perceptron (CNN-MH-MLP) architecture. A comprehensive vehicle-track-embankment-ground Finite Element (FE) model incorporating geometric wheel-rail nonlinearity is developed to generate the in-service train acceleration data used for training the network. The CNN-MH-MLP network demonstrates strong performance in estimating TGIs, exhibiting robustness to noise. Optimized sensor placement with three sensors achieves the best trade-off between accuracy and efficiency. Furthermore, the network's transferability highlights the significance of detailed numerical models in producing virtual databases. This work is expected to facilitate the development of intelligent systems for real-time TGI monitoring, improving inspection efficiency and reducing labor costs.
期刊介绍:
Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities.
The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.