Adaptive neuro-fuzzy inference system for accurate power forecasting for on-grid photovoltaic systems: A case study in Sharjah, UAE

IF 7.1 Q1 ENERGY & FUELS
Tareq Salameh , Mena Maurice Farag , Abdul-Kadir Hamid , Mousa Hussein
{"title":"Adaptive neuro-fuzzy inference system for accurate power forecasting for on-grid photovoltaic systems: A case study in Sharjah, UAE","authors":"Tareq Salameh ,&nbsp;Mena Maurice Farag ,&nbsp;Abdul-Kadir Hamid ,&nbsp;Mousa Hussein","doi":"10.1016/j.ecmx.2025.100958","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the fundamental challenge of accurately forecasting power generation from photovoltaic (PV) systems, which is crucial for effective grid integration and energy management. The intermittency and variability of solar power due to environmental factors pose significant difficulties in achieving reliable predictions. An adaptive neuro-fuzzy inference system (ANFIS) model is proposed for forecasting the performance of a 2.88 kW on-grid PV system in Sharjah, UAE. The model leverages extensive real-time data collected during the peak energy generation season to predict critical variables such as the maximum power point (MPP), voltage, and current. The ANFIS model achieves high prediction accuracy, with a Coefficient of Determination (R<sup>2</sup>) of 0.9967 for power generation, 0.9076 for voltage generation, and 0.9913 for current generation. These results highlight the model’s robustness in capturing the nonlinear dependencies between environmental factors and PV output. The study compares the ANFIS model with other established machine learning models, including Linear Regression, Decision Tree, Support Vector Machine (SVM), and Random Forest. The ANFIS model outperforms these models in terms of prediction accuracy, demonstrating its superior generalization capabilities. The findings underscore the potential of the ANFIS model for robust forecasting and effective PV performance management, providing a reliable tool for early fault detection and system assessment. Future work will focus on integrating fault detection capabilities and extending model validation across different seasons to ensure a comprehensive investigation of the system dynamics under fluctuating weather conditions.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"26 ","pages":"Article 100958"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259017452500090X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the fundamental challenge of accurately forecasting power generation from photovoltaic (PV) systems, which is crucial for effective grid integration and energy management. The intermittency and variability of solar power due to environmental factors pose significant difficulties in achieving reliable predictions. An adaptive neuro-fuzzy inference system (ANFIS) model is proposed for forecasting the performance of a 2.88 kW on-grid PV system in Sharjah, UAE. The model leverages extensive real-time data collected during the peak energy generation season to predict critical variables such as the maximum power point (MPP), voltage, and current. The ANFIS model achieves high prediction accuracy, with a Coefficient of Determination (R2) of 0.9967 for power generation, 0.9076 for voltage generation, and 0.9913 for current generation. These results highlight the model’s robustness in capturing the nonlinear dependencies between environmental factors and PV output. The study compares the ANFIS model with other established machine learning models, including Linear Regression, Decision Tree, Support Vector Machine (SVM), and Random Forest. The ANFIS model outperforms these models in terms of prediction accuracy, demonstrating its superior generalization capabilities. The findings underscore the potential of the ANFIS model for robust forecasting and effective PV performance management, providing a reliable tool for early fault detection and system assessment. Future work will focus on integrating fault detection capabilities and extending model validation across different seasons to ensure a comprehensive investigation of the system dynamics under fluctuating weather conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.80
自引率
3.20%
发文量
180
审稿时长
58 days
期刊介绍: Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability. The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信