Deep-learning analysis of greenspace and metabolic syndrome: A street-view and remote-sensing approach

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Jiahui Tong , Xiaoqing Lian , Jingyan Yan , Shouxin Peng , Yuxuan Tan , Wei Liang , Zhongyang Chen , Lanting Zhang , Xiang Pan , Hao Xiang
{"title":"Deep-learning analysis of greenspace and metabolic syndrome: A street-view and remote-sensing approach","authors":"Jiahui Tong ,&nbsp;Xiaoqing Lian ,&nbsp;Jingyan Yan ,&nbsp;Shouxin Peng ,&nbsp;Yuxuan Tan ,&nbsp;Wei Liang ,&nbsp;Zhongyang Chen ,&nbsp;Lanting Zhang ,&nbsp;Xiang Pan ,&nbsp;Hao Xiang","doi":"10.1016/j.envres.2025.121349","DOIUrl":null,"url":null,"abstract":"<div><div>Evidence linking greenspace exposure to metabolic syndrome (MetS) remains sparse and inconsistent. This exploratory study evaluate the relationship between green visibility index (GVI) and normalized difference vegetation index (NDVI) with MetS prevalence, and quantifies the potential reduction in MetS burden from increased greenspace exposure. Participants were selected from the baseline survey of the Wuhan Chronic Disease Cohort. Street-view imagry was procured within buffer zones ranging from 50 to 500-m surrounding participants' residences. GVI was extracted from street-view images using a convolutional neural network model trained on CityScapes, while the NDVI was ascertained from satellite remote sensing data. We employed generalized linear mixed-effects models to assess the associations between greenspace with the risk of MetS. Additionally, restricted cubic spline function was applied to generate exposure-response curve. Leveraging a counterfactual causal inference framework, we quantified the potential diminution in MetS cases consequent to an elevation in NDVI levels within Wuhan. Within the 150-m buffer zone, each 0.1-unit increase in GVI and NDVI corresponded to 13% and 31% decline in the odds of MetS in the fully adjusted regression models, respectively. A negative non-linear relationship between GVI and MetS was observed when the GVI level exceeded 0.209, while a negative linear association for NDVI when its level exceeded 0.299. Assuming causality, 74,183 cases of MetS can be avoided by achieving greenness threshold of NDVI, amounting for 8.16% of total MetS prevalence in 2019. Our findings offer a compelling justification for the integration of greening policies in initiatives aimed at promoting metabolic health.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"274 ","pages":"Article 121349"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125006000","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Evidence linking greenspace exposure to metabolic syndrome (MetS) remains sparse and inconsistent. This exploratory study evaluate the relationship between green visibility index (GVI) and normalized difference vegetation index (NDVI) with MetS prevalence, and quantifies the potential reduction in MetS burden from increased greenspace exposure. Participants were selected from the baseline survey of the Wuhan Chronic Disease Cohort. Street-view imagry was procured within buffer zones ranging from 50 to 500-m surrounding participants' residences. GVI was extracted from street-view images using a convolutional neural network model trained on CityScapes, while the NDVI was ascertained from satellite remote sensing data. We employed generalized linear mixed-effects models to assess the associations between greenspace with the risk of MetS. Additionally, restricted cubic spline function was applied to generate exposure-response curve. Leveraging a counterfactual causal inference framework, we quantified the potential diminution in MetS cases consequent to an elevation in NDVI levels within Wuhan. Within the 150-m buffer zone, each 0.1-unit increase in GVI and NDVI corresponded to 13% and 31% decline in the odds of MetS in the fully adjusted regression models, respectively. A negative non-linear relationship between GVI and MetS was observed when the GVI level exceeded 0.209, while a negative linear association for NDVI when its level exceeded 0.299. Assuming causality, 74,183 cases of MetS can be avoided by achieving greenness threshold of NDVI, amounting for 8.16% of total MetS prevalence in 2019. Our findings offer a compelling justification for the integration of greening policies in initiatives aimed at promoting metabolic health.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信