Sauchinone preserves cardiac function in doxorubicin-induced cardiomyopathy by inhibiting the NLRP3 inflammasome

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Wenxu Xin , Hai Yang , Xinyu Heng , Tao Xu , Ke Zhang , Yining Zhao , Yankui Liu , Deshen Han , Yueyue Wu , Wei Zhang , Meiqi He , Lin Pu , Yicong Shen , Xiuxia Qu , Ning Sun , Chao Ye
{"title":"Sauchinone preserves cardiac function in doxorubicin-induced cardiomyopathy by inhibiting the NLRP3 inflammasome","authors":"Wenxu Xin ,&nbsp;Hai Yang ,&nbsp;Xinyu Heng ,&nbsp;Tao Xu ,&nbsp;Ke Zhang ,&nbsp;Yining Zhao ,&nbsp;Yankui Liu ,&nbsp;Deshen Han ,&nbsp;Yueyue Wu ,&nbsp;Wei Zhang ,&nbsp;Meiqi He ,&nbsp;Lin Pu ,&nbsp;Yicong Shen ,&nbsp;Xiuxia Qu ,&nbsp;Ning Sun ,&nbsp;Chao Ye","doi":"10.1016/j.phymed.2025.156624","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Doxorubicin (Dox)-induced cardiomyopathy (DIC) is characterized by severe myocardial damage that can progress to dilated cardiomyopathy and potentially lead to heart failure. No effective prevention or treatment strategies are available for DIC. Sauchinone, a diastereomeric lignan isolated from <em>Saururus chinensis</em>, is known for its notable anti-inflammatory effects. However, a paucity of research on sauchinone in relation to heart disease exists, particularly regarding its role in DIC, which remains unclear.</div></div><div><h3>Purpose</h3><div>This study aimed to assess the therapeutic potential of sauchinone in alleviating cardiac injury and elucidate its potential molecular mechanism in DIC.</div></div><div><h3>Methods</h3><div>Male C57BL/6J mice were used to construct chronic and acute DIC models <em>in vivo</em>. The mice were administered sauchinone intragastrically concurrently with the first injection of Dox to evaluate the therapeutic effect of sauchinone on DIC. H9c2, a rat cardiomyocyte cell line, was treated with various concentrations of sauchinone in conjunction with Dox to assess the protective effects of sauchinone on cardiomyocyte injury <em>in vitro</em>.</div></div><div><h3>Results</h3><div>Supplementation with exogenous sauchinone mitigated Dox-induced cardiac atrophy, cardiac fibrosis, and ventricular remodeling, while preserving cardiac function. Sauchinone reduced Dox-induced abnormal apoptosis both <em>in vitro</em> and <em>in vivo</em>. Additionally, sauchinone restored mitochondrial function and decreased reactive oxygen species levels, which may be attributed to its activation of nuclear factor erythroid 2-related factor 2 (NRF2) signaling, thereby attenuating Dox-induced oxidative damage. Furthermore, sauchinone significantly inhibited the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and reduced the cardiac infiltration of inflammatory factors, thereby alleviating oxidative stress and inhibiting the progression of DIC. The NLRP3 agonist nigericin abolished DIC progression, while the NLRP3 antagonist MCC950 further enhanced the beneficial effects of sauchinone on DIC progression both <em>in vivo</em> and <em>in vitro</em>.</div></div><div><h3>Conclusions</h3><div>The key novel finding of the present study is that the use of sauchinone, a diastereomeric lignan isolated from <em>Saururus chinensis</em>, effectively limits the progression of DIC. Specifically, sauchinone not only alleviates Dox-induced chronic cardiac injury but also significantly delays the progression of acute DIC. Mechanistically, inactivation of the NLRP3 inflammasome and NRF2-mediated antioxidant pathways have been identified as two critical signaling pathways regulated by sauchinone, which plays a vital role in blocking the progression of DIC. Sauchinone holds promise as a potential therapeutic approach for DIC or dilated cardiomyopathy.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"140 ","pages":"Article 156624"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325002648","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Doxorubicin (Dox)-induced cardiomyopathy (DIC) is characterized by severe myocardial damage that can progress to dilated cardiomyopathy and potentially lead to heart failure. No effective prevention or treatment strategies are available for DIC. Sauchinone, a diastereomeric lignan isolated from Saururus chinensis, is known for its notable anti-inflammatory effects. However, a paucity of research on sauchinone in relation to heart disease exists, particularly regarding its role in DIC, which remains unclear.

Purpose

This study aimed to assess the therapeutic potential of sauchinone in alleviating cardiac injury and elucidate its potential molecular mechanism in DIC.

Methods

Male C57BL/6J mice were used to construct chronic and acute DIC models in vivo. The mice were administered sauchinone intragastrically concurrently with the first injection of Dox to evaluate the therapeutic effect of sauchinone on DIC. H9c2, a rat cardiomyocyte cell line, was treated with various concentrations of sauchinone in conjunction with Dox to assess the protective effects of sauchinone on cardiomyocyte injury in vitro.

Results

Supplementation with exogenous sauchinone mitigated Dox-induced cardiac atrophy, cardiac fibrosis, and ventricular remodeling, while preserving cardiac function. Sauchinone reduced Dox-induced abnormal apoptosis both in vitro and in vivo. Additionally, sauchinone restored mitochondrial function and decreased reactive oxygen species levels, which may be attributed to its activation of nuclear factor erythroid 2-related factor 2 (NRF2) signaling, thereby attenuating Dox-induced oxidative damage. Furthermore, sauchinone significantly inhibited the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and reduced the cardiac infiltration of inflammatory factors, thereby alleviating oxidative stress and inhibiting the progression of DIC. The NLRP3 agonist nigericin abolished DIC progression, while the NLRP3 antagonist MCC950 further enhanced the beneficial effects of sauchinone on DIC progression both in vivo and in vitro.

Conclusions

The key novel finding of the present study is that the use of sauchinone, a diastereomeric lignan isolated from Saururus chinensis, effectively limits the progression of DIC. Specifically, sauchinone not only alleviates Dox-induced chronic cardiac injury but also significantly delays the progression of acute DIC. Mechanistically, inactivation of the NLRP3 inflammasome and NRF2-mediated antioxidant pathways have been identified as two critical signaling pathways regulated by sauchinone, which plays a vital role in blocking the progression of DIC. Sauchinone holds promise as a potential therapeutic approach for DIC or dilated cardiomyopathy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信