Yaqiong Liu , Yuqing Shang , Zhen Wang , Hongxia Gao , Nana Jin , Weihao Zhang , Huoyun Shen , Shaolan Sun , Dongzhi Wang , Zhiwei Wang , Xiaosong Gu , Yumin Yang , Guicai Li
{"title":"From microsphere synthesis to neural tissue regeneration: Unraveling the potentials and progress","authors":"Yaqiong Liu , Yuqing Shang , Zhen Wang , Hongxia Gao , Nana Jin , Weihao Zhang , Huoyun Shen , Shaolan Sun , Dongzhi Wang , Zhiwei Wang , Xiaosong Gu , Yumin Yang , Guicai Li","doi":"10.1016/j.compositesb.2025.112363","DOIUrl":null,"url":null,"abstract":"<div><div>Microspheres have been extensively employed as drug delivery systems within the realm of tissue engineering, owing to their remarkable controlled release capabilities. The inherent properties of microspheres, with respect to size and structure, endow them with the ability to form tiny porous network architectures. These architectures can serve as platforms for the delivery of growth factors, drugs, or nanoscale materials, thereby progressively emerging as fundamental constituents in the fabrication of tissue regeneration scaffolds. In the domain of neural tissue engineering, microspheres represent ideal carriers, as they are capable of furnishing multifactorial cues during nerve tissue repair. Such cues encompass the delivery of chemical signals essential for neuronal communication, the conveyance of biological factors conducive to axon outgrowth, and the responsiveness to physical stimulations. Nevertheless, a comprehensive and systematic work summary regarding the application of microspheres in neural tissue engineering remains scarce. Consequently, in this review, we initially conduct a systematic overview of the preparation methodologies, optimization strategies in terms of smart responsiveness, and characterization techniques of diverse microspheres. Additionally, we further consolidate the application of microsphere-based scaffolds in the remediation of nerve injuries, including traumatic brain injury, spinal cord injury, and peripheral nerve injury. Finally, the challenges and prospective directions pertaining to microspheres in tissue engineering are deliberated. The current work is anticipated to offer valuable references for the advancement of microspheres in the domain of various tissue engineering applications.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"298 ","pages":"Article 112363"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825002550","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microspheres have been extensively employed as drug delivery systems within the realm of tissue engineering, owing to their remarkable controlled release capabilities. The inherent properties of microspheres, with respect to size and structure, endow them with the ability to form tiny porous network architectures. These architectures can serve as platforms for the delivery of growth factors, drugs, or nanoscale materials, thereby progressively emerging as fundamental constituents in the fabrication of tissue regeneration scaffolds. In the domain of neural tissue engineering, microspheres represent ideal carriers, as they are capable of furnishing multifactorial cues during nerve tissue repair. Such cues encompass the delivery of chemical signals essential for neuronal communication, the conveyance of biological factors conducive to axon outgrowth, and the responsiveness to physical stimulations. Nevertheless, a comprehensive and systematic work summary regarding the application of microspheres in neural tissue engineering remains scarce. Consequently, in this review, we initially conduct a systematic overview of the preparation methodologies, optimization strategies in terms of smart responsiveness, and characterization techniques of diverse microspheres. Additionally, we further consolidate the application of microsphere-based scaffolds in the remediation of nerve injuries, including traumatic brain injury, spinal cord injury, and peripheral nerve injury. Finally, the challenges and prospective directions pertaining to microspheres in tissue engineering are deliberated. The current work is anticipated to offer valuable references for the advancement of microspheres in the domain of various tissue engineering applications.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.