Minimal surface equation and Bernstein property on RCD spaces

IF 1.7 2区 数学 Q1 MATHEMATICS
Alessandro Cucinotta
{"title":"Minimal surface equation and Bernstein property on RCD spaces","authors":"Alessandro Cucinotta","doi":"10.1016/j.jfa.2025.110907","DOIUrl":null,"url":null,"abstract":"<div><div>We show that if <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> is an <span><math><mrow><mi>RCD</mi></mrow><mo>(</mo><mi>K</mi><mo>,</mo><mi>N</mi><mo>)</mo></math></span> space and <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>l</mi><mi>o</mi><mi>c</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msubsup><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is a solution of the minimal surface equation, then <em>u</em> is harmonic on its graph (which has a natural metric measure space structure). If <span><math><mi>K</mi><mo>=</mo><mn>0</mn></math></span> this allows to obtain an Harnack inequality for <em>u</em>, which in turn implies the Bernstein property, meaning that any positive solution to the minimal surface equation must be constant. As an application, we obtain oscillation estimates and a Bernstein Theorem for minimal graphs in products <span><math><mi>M</mi><mo>×</mo><mi>R</mi></math></span>, where <span><math><mi>M</mi></math></span> is a smooth manifold (possibly weighted and with boundary) with non-negative Ricci curvature.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 2","pages":"Article 110907"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625000898","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if (X,d,m) is an RCD(K,N) space and uWloc1,1(X) is a solution of the minimal surface equation, then u is harmonic on its graph (which has a natural metric measure space structure). If K=0 this allows to obtain an Harnack inequality for u, which in turn implies the Bernstein property, meaning that any positive solution to the minimal surface equation must be constant. As an application, we obtain oscillation estimates and a Bernstein Theorem for minimal graphs in products M×R, where M is a smooth manifold (possibly weighted and with boundary) with non-negative Ricci curvature.
RCD空间上的极小曲面方程与Bernstein性质
我们证明了如果(X,d,m)是RCD(K,N)空间,且u∈Wloc1,1(X)是最小曲面方程的解,则u在其图(具有自然度量度量空间结构)上是调和的。如果K=0,这允许得到u的哈纳克不等式,这反过来又意味着伯恩斯坦性质,这意味着最小表面方程的任何正解必须是常数。作为一个应用,我们得到了乘积M×R中最小图的振荡估计和Bernstein定理,其中M是一个非负Ricci曲率的光滑流形(可能是加权的和有边界的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信