{"title":"DNA hairpin dimer-mediated dual-catalysis circuit for efficient and amplifiable electrochemical biosensing","authors":"Honglin Song, Jingjing Ye, Yifu Zhou, Zhixuan Chen, Ruo Yuan, Wenju Xu","doi":"10.1016/j.bios.2025.117332","DOIUrl":null,"url":null,"abstract":"<div><div>Exploring a variable catalytic hairpin assembly to amplify specific input might be intriguing for electrochemically detecting short-stranded DNA segment related to <em>U. virens</em> (<em>i</em>DNA). Herein, we proposed the first concept of <em>h</em>airpin <em>d</em>imer-mediated Dual-Catalysis Circuit (<em>hd</em>DCC) for creating rapid and efficient electrochemical biosensor. For proof-of-concept, we designed two functional hairpins (H1 and H2) both ended by a sulfhydryl (-SH) group. H1 was recognizable to <em>i</em>DNA, and H2 was modified with electroactive ferrocene (Fc) for signal readout. Under certain condition, two -SH groups were oxidized to form a disulfide bond (S-S), thus linking two mono-hairpins into their own dimers (<em>d</em>H1 or <em>d</em>H2). Upon presenting <em>i</em>DNA, the <em>hd</em>DCC was operated progressively via two consecutive cross-hybridization and displacement events among <em>i</em>DNA, <em>d</em>H1, <em>d</em>H2 and another helping hairpin. During this process, <em>i</em>DNA and <em>d</em>H1 as two cooperative catalysts were repeatedly displaced to accelerate the transduction and amplification, guiding the immobilization of Fc tags in the modified electrode surface for outputting significant current signal. Due to the structural confinement, two reactive units of <em>hd</em>DCC were closely oriented in shorter spatial distance to increase their local concentration, enabling rapider reaction kinetics and more efficient yield. By introducing hairpin dimers for dual-catalysis recycles, this strategy would provide a new paradigm to extend more extensive applications of typical catalytic hairpin assemblies, particularly in the disease prevention of agricultural crops.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"278 ","pages":"Article 117332"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325002064","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring a variable catalytic hairpin assembly to amplify specific input might be intriguing for electrochemically detecting short-stranded DNA segment related to U. virens (iDNA). Herein, we proposed the first concept of hairpin dimer-mediated Dual-Catalysis Circuit (hdDCC) for creating rapid and efficient electrochemical biosensor. For proof-of-concept, we designed two functional hairpins (H1 and H2) both ended by a sulfhydryl (-SH) group. H1 was recognizable to iDNA, and H2 was modified with electroactive ferrocene (Fc) for signal readout. Under certain condition, two -SH groups were oxidized to form a disulfide bond (S-S), thus linking two mono-hairpins into their own dimers (dH1 or dH2). Upon presenting iDNA, the hdDCC was operated progressively via two consecutive cross-hybridization and displacement events among iDNA, dH1, dH2 and another helping hairpin. During this process, iDNA and dH1 as two cooperative catalysts were repeatedly displaced to accelerate the transduction and amplification, guiding the immobilization of Fc tags in the modified electrode surface for outputting significant current signal. Due to the structural confinement, two reactive units of hdDCC were closely oriented in shorter spatial distance to increase their local concentration, enabling rapider reaction kinetics and more efficient yield. By introducing hairpin dimers for dual-catalysis recycles, this strategy would provide a new paradigm to extend more extensive applications of typical catalytic hairpin assemblies, particularly in the disease prevention of agricultural crops.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.