Predicting reward-based crowdfunding success with multimodal data: A theory-guided framework

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Liqian Bao , Gang Chen , Zongxi Liu , Shuaiyong Xiao , Huimin Zhao
{"title":"Predicting reward-based crowdfunding success with multimodal data: A theory-guided framework","authors":"Liqian Bao ,&nbsp;Gang Chen ,&nbsp;Zongxi Liu ,&nbsp;Shuaiyong Xiao ,&nbsp;Huimin Zhao","doi":"10.1016/j.im.2025.104131","DOIUrl":null,"url":null,"abstract":"<div><div>There is a growing need to investigate the impact of multimodal data, which are becoming increasingly prevalent on crowdfunding platforms, on prediction of fundraising outcomes. However, a prediction framework drawing upon rational theoretical foundations to leverage multimodal data in crowdfunding is still lacking. Guided by relevant theories, we explore the ideational, interpersonal, and textual metafunctions of multimodal data geared toward fundraising success prediction. Our empirical evaluation demonstrates superior predictive utilities of various metafunction-based multimodal features over purely data-driven ones. Our results also reveal that the multiple data modalities interact complementarily and synergistically to improve the prediction performance. Specifically, combining metafunctions improved prediction performance by 2–15 % over a single metafunction, while multimodality outperformed single data modality by 7–18 % within each metafunction.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 4","pages":"Article 104131"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720625000345","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

There is a growing need to investigate the impact of multimodal data, which are becoming increasingly prevalent on crowdfunding platforms, on prediction of fundraising outcomes. However, a prediction framework drawing upon rational theoretical foundations to leverage multimodal data in crowdfunding is still lacking. Guided by relevant theories, we explore the ideational, interpersonal, and textual metafunctions of multimodal data geared toward fundraising success prediction. Our empirical evaluation demonstrates superior predictive utilities of various metafunction-based multimodal features over purely data-driven ones. Our results also reveal that the multiple data modalities interact complementarily and synergistically to improve the prediction performance. Specifically, combining metafunctions improved prediction performance by 2–15 % over a single metafunction, while multimodality outperformed single data modality by 7–18 % within each metafunction.
用多模态数据预测基于奖励的众筹成功:一个理论指导框架
多模式数据在众筹平台上变得越来越普遍,因此越来越需要调查多模式数据对筹款结果预测的影响。然而,目前还缺乏一个基于合理理论基础的预测框架来利用众筹中的多模态数据。在相关理论的指导下,我们探讨了多模态数据在筹款成功预测中的概念、人际和文本元功能。我们的经验评估证明了各种基于元函数的多模态特征优于纯数据驱动特征的预测效用。我们的研究结果还表明,多种数据模式相互补充和协同作用,以提高预测性能。具体来说,组合元函数比单个元函数提高了2 - 15%的预测性能,而在每个元函数中,多模态的预测性能比单个数据模态高7 - 18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信