Daoxuan Sun , Laizhi Sun , Dong Han , Lei Chen , Shuangxia Yang , Tianjin Li , Zhiguo Dong , Baofeng Zhao , Meirong Xu , Shue Tian , Xinping Xie , Hongyu Si , Dongliang Hua
{"title":"Enhanced aromatics production via co-pyrolysis of biomass and plastic by Zn modified ZSM-5 catalysts","authors":"Daoxuan Sun , Laizhi Sun , Dong Han , Lei Chen , Shuangxia Yang , Tianjin Li , Zhiguo Dong , Baofeng Zhao , Meirong Xu , Shue Tian , Xinping Xie , Hongyu Si , Dongliang Hua","doi":"10.1016/j.jaap.2025.107086","DOIUrl":null,"url":null,"abstract":"<div><div>The co-pyrolysis of biomass and plastic with Zn/ZSM-5 catalysts were studied to improve the aromatic production. The Zn/ZSM-5 catalysts were synthesized by the impregnation method and characterized by BET, XRD, NH<sub>3</sub>-TPD and SEM methods. The effects of Si/Al ratios of ZSM-5, Zn loadings, catalytic temperatures, and mass ratios of feedstock-to-catalyst on the selectivity and composition of aromatics in the liquid products were investigated. It was found that under the optimal conditions of 5 % Zn loading, Si/Al ratio of ZSM-5 of 120, catalytic temperature of 500 ℃, and mass ratio of feedstock-to-catalyst of 1/2, the selectivity of monocyclic aromatics hydrocarbons (MAHs) can reach 86.02 %, and the selectivity of benzene, toluene, ethylbenzene, and xylene (BTEX) can reach 59.10 %. Furthermore, the stability experiments demonstrated that the 5 % Zn/ZSM-5 catalyst maintained the aromatic selectivity of MAHs above 85 % after 10 cycles. The mechanism of co-pyrolysis of biomass and plastic with Zn/ZSM-5 catalysts was also proposed, which indicates that the Zn/ZSM-5 catalyst promoted the formation of aromatics via Diels-Alder and dehydration reactions between furan derived from biomass pyrolysis and alkenes produced from plastic pyrolysis.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"189 ","pages":"Article 107086"},"PeriodicalIF":5.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025001391","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The co-pyrolysis of biomass and plastic with Zn/ZSM-5 catalysts were studied to improve the aromatic production. The Zn/ZSM-5 catalysts were synthesized by the impregnation method and characterized by BET, XRD, NH3-TPD and SEM methods. The effects of Si/Al ratios of ZSM-5, Zn loadings, catalytic temperatures, and mass ratios of feedstock-to-catalyst on the selectivity and composition of aromatics in the liquid products were investigated. It was found that under the optimal conditions of 5 % Zn loading, Si/Al ratio of ZSM-5 of 120, catalytic temperature of 500 ℃, and mass ratio of feedstock-to-catalyst of 1/2, the selectivity of monocyclic aromatics hydrocarbons (MAHs) can reach 86.02 %, and the selectivity of benzene, toluene, ethylbenzene, and xylene (BTEX) can reach 59.10 %. Furthermore, the stability experiments demonstrated that the 5 % Zn/ZSM-5 catalyst maintained the aromatic selectivity of MAHs above 85 % after 10 cycles. The mechanism of co-pyrolysis of biomass and plastic with Zn/ZSM-5 catalysts was also proposed, which indicates that the Zn/ZSM-5 catalyst promoted the formation of aromatics via Diels-Alder and dehydration reactions between furan derived from biomass pyrolysis and alkenes produced from plastic pyrolysis.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.