{"title":"Using heteroatom in nitrogen-mediated pyrolysis to suppressed polycyclic aromatic hydrocarbon derived from cellulose and polyethylene waste","authors":"Cheng-Di Dong , Divyashakti Sureshchandra Gautam , Chiu-Wen Chen , Chang-Mao Hung","doi":"10.1016/j.eti.2025.104130","DOIUrl":null,"url":null,"abstract":"<div><div>The conversion of waste plastic to biochar is an environmentally friendly and economically feasible approach to handle the current global crisis of plastic pollution. This study investigates the fabrication of biochar from cellulose and polyethylene plastics composites (CLPE) via co-pyrolysis under various temperatures ranging from 300 to 900 °C, focusing on hazard associations of pyrogenic-derived polycyclic aromatic hydrocarbons (PAHs). CLPE900, synthesized at 900 °C under N<sub>2</sub> as a carrier gas, exhibited a higher concentration of PAHs (15,849 ± 315 ng g<sup>–1</sup>) than CLPE700 (2480 ± 56 ng g<sup>–1</sup>) produced in a CO<sub>2</sub> atmosphere. Further, different heterogeneous atoms including B, N, NB, S, SB, and NS were used as dopants to reduce PAHs formation and improve CLPE co-pyrolysis. Specifically, by combining boron moieties with CLPE potentially suppressed the formation of PAHs, resulting in a 99.7 % removal performance. These findings reveal a promising avenue for mitigating the environmental impact of PAHs via heteroatom-assisted thermal chemical processing.</div></div>","PeriodicalId":11725,"journal":{"name":"Environmental Technology & Innovation","volume":"38 ","pages":"Article 104130"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology & Innovation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352186425001166","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of waste plastic to biochar is an environmentally friendly and economically feasible approach to handle the current global crisis of plastic pollution. This study investigates the fabrication of biochar from cellulose and polyethylene plastics composites (CLPE) via co-pyrolysis under various temperatures ranging from 300 to 900 °C, focusing on hazard associations of pyrogenic-derived polycyclic aromatic hydrocarbons (PAHs). CLPE900, synthesized at 900 °C under N2 as a carrier gas, exhibited a higher concentration of PAHs (15,849 ± 315 ng g–1) than CLPE700 (2480 ± 56 ng g–1) produced in a CO2 atmosphere. Further, different heterogeneous atoms including B, N, NB, S, SB, and NS were used as dopants to reduce PAHs formation and improve CLPE co-pyrolysis. Specifically, by combining boron moieties with CLPE potentially suppressed the formation of PAHs, resulting in a 99.7 % removal performance. These findings reveal a promising avenue for mitigating the environmental impact of PAHs via heteroatom-assisted thermal chemical processing.
期刊介绍:
Environmental Technology & Innovation adopts a challenge-oriented approach to solutions by integrating natural sciences to promote a sustainable future. The journal aims to foster the creation and development of innovative products, technologies, and ideas that enhance the environment, with impacts across soil, air, water, and food in rural and urban areas.
As a platform for disseminating scientific evidence for environmental protection and sustainable development, the journal emphasizes fundamental science, methodologies, tools, techniques, and policy considerations. It emphasizes the importance of science and technology in environmental benefits, including smarter, cleaner technologies for environmental protection, more efficient resource processing methods, and the evidence supporting their effectiveness.