Estimate of the driving force for creep crack growth

IF 4.7 2区 工程技术 Q1 MECHANICS
O. Kolednik , M. Kegl , N. Gubeljak , J. Predan
{"title":"Estimate of the driving force for creep crack growth","authors":"O. Kolednik ,&nbsp;M. Kegl ,&nbsp;N. Gubeljak ,&nbsp;J. Predan","doi":"10.1016/j.engfracmech.2025.111013","DOIUrl":null,"url":null,"abstract":"<div><div>A discussion on the conventional creep crack growth parameters, e.g. the experimental <em>C</em>*-integral, <em>C</em>*<sub>exp</sub>, or the experimental <em>C</em><sub>t</sub>-integral, <em>C</em><sub>t,ssc</sub>, shows that the physical meaning of these parameters for growing cracks in elastic–plastic, creeping materials is not fully clear. Therefore, a comparison is presented in this paper between the conventional creep crack growth parameters, several <em>J</em>-integral related parameters and the crack driving force (CDF), which has been used in linear elastic and elastic–plastic fracture mechanics. The CDF for elastic–plastic, creeping materials is derived from basic thermodynamic principles and by applying the concept of configurational forces (CFs). A comprehensive numerical study is performed where crack propagation is modelled by alternating creep and crack extension steps at constant loads in a compact tension specimen made of the nickel-base superalloy Waspaloy at a temperature of 700 °C. The CDF is evaluated by a CF-based post-processing procedure after a conventional finite element computation. This procedure is applicable for small-scale creep (ssc-), transition creep (tc-) and “moderate” extensive creep (ec-) conditions. For more pronounced ec-conditions, the procedure might have to be adapted. It is shown that <em>C</em>*<sub>exp</sub> and <em>C</em><sub>t,ssc</sub> reflect the time derivative of the CDF during the creep stages. In contrast, the variations of the CDF coincide well with that of <em>J</em>-values estimated from the crack-tip opening displacement.</div></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":"319 ","pages":"Article 111013"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794425002140","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A discussion on the conventional creep crack growth parameters, e.g. the experimental C*-integral, C*exp, or the experimental Ct-integral, Ct,ssc, shows that the physical meaning of these parameters for growing cracks in elastic–plastic, creeping materials is not fully clear. Therefore, a comparison is presented in this paper between the conventional creep crack growth parameters, several J-integral related parameters and the crack driving force (CDF), which has been used in linear elastic and elastic–plastic fracture mechanics. The CDF for elastic–plastic, creeping materials is derived from basic thermodynamic principles and by applying the concept of configurational forces (CFs). A comprehensive numerical study is performed where crack propagation is modelled by alternating creep and crack extension steps at constant loads in a compact tension specimen made of the nickel-base superalloy Waspaloy at a temperature of 700 °C. The CDF is evaluated by a CF-based post-processing procedure after a conventional finite element computation. This procedure is applicable for small-scale creep (ssc-), transition creep (tc-) and “moderate” extensive creep (ec-) conditions. For more pronounced ec-conditions, the procedure might have to be adapted. It is shown that C*exp and Ct,ssc reflect the time derivative of the CDF during the creep stages. In contrast, the variations of the CDF coincide well with that of J-values estimated from the crack-tip opening displacement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信