Horseradish peroxidase-catalyzed crosslinking injectable hydrogel for bone repair and regeneration

IF 4.7 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Hongwei Pan , Yue Qu , Feng Wang , Shengbing Zhao , Gaigai Chen
{"title":"Horseradish peroxidase-catalyzed crosslinking injectable hydrogel for bone repair and regeneration","authors":"Hongwei Pan ,&nbsp;Yue Qu ,&nbsp;Feng Wang ,&nbsp;Shengbing Zhao ,&nbsp;Gaigai Chen","doi":"10.1016/j.colcom.2025.100828","DOIUrl":null,"url":null,"abstract":"<div><div>In clinical practice, addressing severe bone defects resulting from trauma, tumors, infections or congenital disorders remains a challenge in the surgical domain. Although bone tissue has a certain capacity for self-repair, artificial substitute materials of bone are still required to facilitate the repair, especially for large-scale bone defects. At present, tissue engineering-related materials that mimic the structure, mechanical properties, and biological characteristics of natural bone have been widely used for addressing bone defects and promoting in situ bone regeneration. Hydrogels that emulate the properties of the extracellular matrix are prevalent materials in bone tissue engineering, with a particular emphasis on those crosslinked through HRP-mediated, which have garnered considerable interest due to their high efficiency of preparation, mild reaction conditions, controllable properties, and excellent biocompatibility. However, the suboptimal osteogenic capability inherent in HRP-mediated crosslinked hydrogels necessitates the integration of additional osteogenic activity materials, such as biological calcium phosphates, biomimetic scaffolds, growth factors, synthetic peptides, and nanomaterials, to bolster the hydrogel scaffolds' osteogenic potential. This manuscript provides a concise overview of the standard methodologies for crafting injectable hydrogels, highlighting the HRP catalytic reaction mechanism, and strategies for modulating hydrogel attributes. Furthermore, this paper delves into the recent advancements in HRP-mediated crosslinked hydrogel scaffolds, highlighting their role in bone defect repair within the realm of bone tissue engineering. These insights establish a robust foundation for the innovation, development, and clinical application of bone tissue substitutes that prioritize biosafety.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"66 ","pages":"Article 100828"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000123","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In clinical practice, addressing severe bone defects resulting from trauma, tumors, infections or congenital disorders remains a challenge in the surgical domain. Although bone tissue has a certain capacity for self-repair, artificial substitute materials of bone are still required to facilitate the repair, especially for large-scale bone defects. At present, tissue engineering-related materials that mimic the structure, mechanical properties, and biological characteristics of natural bone have been widely used for addressing bone defects and promoting in situ bone regeneration. Hydrogels that emulate the properties of the extracellular matrix are prevalent materials in bone tissue engineering, with a particular emphasis on those crosslinked through HRP-mediated, which have garnered considerable interest due to their high efficiency of preparation, mild reaction conditions, controllable properties, and excellent biocompatibility. However, the suboptimal osteogenic capability inherent in HRP-mediated crosslinked hydrogels necessitates the integration of additional osteogenic activity materials, such as biological calcium phosphates, biomimetic scaffolds, growth factors, synthetic peptides, and nanomaterials, to bolster the hydrogel scaffolds' osteogenic potential. This manuscript provides a concise overview of the standard methodologies for crafting injectable hydrogels, highlighting the HRP catalytic reaction mechanism, and strategies for modulating hydrogel attributes. Furthermore, this paper delves into the recent advancements in HRP-mediated crosslinked hydrogel scaffolds, highlighting their role in bone defect repair within the realm of bone tissue engineering. These insights establish a robust foundation for the innovation, development, and clinical application of bone tissue substitutes that prioritize biosafety.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Interface Science Communications
Colloid and Interface Science Communications Materials Science-Materials Chemistry
CiteScore
9.40
自引率
6.70%
发文量
125
审稿时长
43 days
期刊介绍: Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信