Effective compound combination of Bufei Yishen formula ameliorates PM2.5-induced COPD by inhibiting mitochondrial oxidative stress through SIRT3-mediated FOXO3 deacetylation

IF 6.7 1区 医学 Q1 CHEMISTRY, MEDICINAL
Jing Wang , Huiyu Yue , Yangzi Dong , Tiantian Liu , Jiansheng Li
{"title":"Effective compound combination of Bufei Yishen formula ameliorates PM2.5-induced COPD by inhibiting mitochondrial oxidative stress through SIRT3-mediated FOXO3 deacetylation","authors":"Jing Wang ,&nbsp;Huiyu Yue ,&nbsp;Yangzi Dong ,&nbsp;Tiantian Liu ,&nbsp;Jiansheng Li","doi":"10.1016/j.phymed.2025.156568","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Fine particulate matter (PM2.5) exposure significantly contributes to the development of chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain inadequately elucidated, and there is a lack of effective clinical treatments. A combination of five bioactive ingredients derived from the traditional Chinese prescription Bufei Yishen formula (BYF) that is widely accepted for COPD treatment, exhibits bioequivalence with BYF and has been shown to alleviate COPD exacerbation in rat models induced by PM2.5 exposure.</div></div><div><h3>Purpose</h3><div>To investigate the underlying mechanisms of the effective compound combination (ECC) attenuating mitochondrial oxidative stress in COPD progression induced by PM2.5 exposure.</div></div><div><h3>Methods</h3><div>The COPD rats were induced by cigarette smoke inhalation and bacterial infection, then exposed to real-time PM2.5 by a whole-body exposure system. The therapeutic efficacy of ECC was assessed by evaluating lung function, pathological changes, levels of oxidative stress, and inflammation. <em>In vitro</em>, the PM2.5-induced human bronchial and alveolar epithelial cells (BEAS-2B and HPAEpiC) were used to explore the underlying mechanisms of ECC against mitochondrial oxidative stress.</div></div><div><h3>Results</h3><div>Initially, based on the successful establishment of a PM2.5-aggravated COPD rat model, we demonstrated the protective effects of ECC on COPD progression induced by PM2.5 exposure by improving lung function, alleviating pathological injury, and reducing oxidative stress and inflammation. Subsequently, we identified that the inhibitory effects of ECC on mitochondrial oxidative damage, respiratory dysfunction, and fission/fusion imbalance induced by PM2.5 are primarily mediated through SIRT3 activation, both <em>in vivo</em> and <em>in vitro</em>. Mechanically, the deacetylation of FOXO3 at lysine residues 271 and 290 by SIRT3 is crucial for ECC to mitigate mitochondrial oxidative stress during the progression of COPD in response to PM2.5.</div></div><div><h3>Conclusion</h3><div>This study reveals a previously unrecognized mechanism by which ECC acts as an agonist of SIRT3, offering potential therapeutic benefits for patients with COPD who are exposed to PM2.5.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"140 ","pages":"Article 156568"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325002089","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Fine particulate matter (PM2.5) exposure significantly contributes to the development of chronic obstructive pulmonary disease (COPD). However, the underlying mechanisms remain inadequately elucidated, and there is a lack of effective clinical treatments. A combination of five bioactive ingredients derived from the traditional Chinese prescription Bufei Yishen formula (BYF) that is widely accepted for COPD treatment, exhibits bioequivalence with BYF and has been shown to alleviate COPD exacerbation in rat models induced by PM2.5 exposure.

Purpose

To investigate the underlying mechanisms of the effective compound combination (ECC) attenuating mitochondrial oxidative stress in COPD progression induced by PM2.5 exposure.

Methods

The COPD rats were induced by cigarette smoke inhalation and bacterial infection, then exposed to real-time PM2.5 by a whole-body exposure system. The therapeutic efficacy of ECC was assessed by evaluating lung function, pathological changes, levels of oxidative stress, and inflammation. In vitro, the PM2.5-induced human bronchial and alveolar epithelial cells (BEAS-2B and HPAEpiC) were used to explore the underlying mechanisms of ECC against mitochondrial oxidative stress.

Results

Initially, based on the successful establishment of a PM2.5-aggravated COPD rat model, we demonstrated the protective effects of ECC on COPD progression induced by PM2.5 exposure by improving lung function, alleviating pathological injury, and reducing oxidative stress and inflammation. Subsequently, we identified that the inhibitory effects of ECC on mitochondrial oxidative damage, respiratory dysfunction, and fission/fusion imbalance induced by PM2.5 are primarily mediated through SIRT3 activation, both in vivo and in vitro. Mechanically, the deacetylation of FOXO3 at lysine residues 271 and 290 by SIRT3 is crucial for ECC to mitigate mitochondrial oxidative stress during the progression of COPD in response to PM2.5.

Conclusion

This study reveals a previously unrecognized mechanism by which ECC acts as an agonist of SIRT3, offering potential therapeutic benefits for patients with COPD who are exposed to PM2.5.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytomedicine
Phytomedicine 医学-药学
CiteScore
10.30
自引率
5.10%
发文量
670
审稿时长
91 days
期刊介绍: Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信