{"title":"Would mixed physical barriers be able to desalinate coastal aquifers from seawater intrusion under pumping conditions?","authors":"Ismail Abd-Elaty , Ashraf Ahmed","doi":"10.1016/j.gsd.2025.101424","DOIUrl":null,"url":null,"abstract":"<div><div>This study used the SEAWAT model to investigate the potential of using mixed physical barriers (MPB) to control SWI under pumping conditions in typical homogenous and layered heterogeneous coastal aquifers. The numerical models were based on controlled two-dimensional (2D) laboratory tests and field studies in the Biscayne aquifer, which is situated in the Cutler Ridge region close to Deering Estate, Florida, USA. The modelling results revealed critical insights into SWI behaviour under pumping conditions. Specifically, it was observed that the intrusion wedge extended significantly further inland in layered heterogeneous aquifers and homogeneous aquifers compared with the base case without pumping. Results showed that coastal aquifers with bottom low-hydraulic conductivity have smaller SWI compared with top and middle-layered aquifers. The SWI repulsion reached 27% by installing the MPB, while the groundwater salinity increased to 3%, 38% and 121% by increasing the abstraction well rates by 10 m<sup>3</sup>/day, 15 m<sup>3</sup>/day and 20 m<sup>3</sup>/day, compared with no pumping after using the MPB. The current study results are very interesting for coastal aquifer management and require economic study to ensure the feasibility of using this method.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"29 ","pages":"Article 101424"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X25000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study used the SEAWAT model to investigate the potential of using mixed physical barriers (MPB) to control SWI under pumping conditions in typical homogenous and layered heterogeneous coastal aquifers. The numerical models were based on controlled two-dimensional (2D) laboratory tests and field studies in the Biscayne aquifer, which is situated in the Cutler Ridge region close to Deering Estate, Florida, USA. The modelling results revealed critical insights into SWI behaviour under pumping conditions. Specifically, it was observed that the intrusion wedge extended significantly further inland in layered heterogeneous aquifers and homogeneous aquifers compared with the base case without pumping. Results showed that coastal aquifers with bottom low-hydraulic conductivity have smaller SWI compared with top and middle-layered aquifers. The SWI repulsion reached 27% by installing the MPB, while the groundwater salinity increased to 3%, 38% and 121% by increasing the abstraction well rates by 10 m3/day, 15 m3/day and 20 m3/day, compared with no pumping after using the MPB. The current study results are very interesting for coastal aquifer management and require economic study to ensure the feasibility of using this method.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.