Metagenomic insights into cyanotoxin dynamics in a Mexican subtropical lake

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Nicolas Tromas , Dana F. Simon , Nathalie Fortin , Miriam Hernández-Zamora , Autumn Pereira , Alberto Mazza , Stephanie Messina Pacheco , Marie-Josée Levesque , Laura Martínez-Jerónimo , Paloma Antuna-González , Gabriel Munoz , B. Jesse Shapiro , Sébastien Sauvé , Fernando Martínez-Jerónimo
{"title":"Metagenomic insights into cyanotoxin dynamics in a Mexican subtropical lake","authors":"Nicolas Tromas ,&nbsp;Dana F. Simon ,&nbsp;Nathalie Fortin ,&nbsp;Miriam Hernández-Zamora ,&nbsp;Autumn Pereira ,&nbsp;Alberto Mazza ,&nbsp;Stephanie Messina Pacheco ,&nbsp;Marie-Josée Levesque ,&nbsp;Laura Martínez-Jerónimo ,&nbsp;Paloma Antuna-González ,&nbsp;Gabriel Munoz ,&nbsp;B. Jesse Shapiro ,&nbsp;Sébastien Sauvé ,&nbsp;Fernando Martínez-Jerónimo","doi":"10.1016/j.chemosphere.2025.144285","DOIUrl":null,"url":null,"abstract":"<div><div>Valle de Bravo is a vital water supply for part of the metropolitan area of the Valle de Mexico megacity, providing 30% of Mexico City's water demand. This water body has experienced an acceleration in its trophic status, going from oligotrophic to eutrophic in just a few years. This temperate lake (at a tropical latitude) is in a persistent bloom dominated by a variety of co-occurring cyanobacteria, many of which have toxigenic potential based on microscopic identification, that makes it difficult or even impractical to identify the cyanotoxin producers. To unravel this complexity and directly identify the toxigenic genera, we showed that integrating classical approaches with metagenomic is required. We first characterized, from genes to metagenomes assembled genomes, the toxigenic Cyanobacteria. We found that <em>Microcystis</em> was the most dominant cyanobacterial genus and the sole carrier of the mcy operon, making it the only microcystin producer. We then quantified twenty-one different cyanopeptides, including twelve microcystin congeners using a high-performance liquid chromatography-high-resolution. Nine microcystins (MCs) and the emerging cyanotoxin anabaenopeptin-A and -B were found at varying concentrations throughout the year, with MC-LA being the most common and abundant. Our findings, constrained by our sampling strategy, indicate that conventional cyanotoxin biomarkers (<em>e.g.</em>, toxin mcy genes) were not consistently reliable indicators of cyanotoxin concentrations in this freshwater system. In this study, we followed the dynamics of the cyanobacterial community and the associated cyanopeptides with unprecedented resolution. Our results have implications for better management of toxic blooms in this freshwater system, which supplies drinking water to more than 7 million people in the megalopolis of Valle de México.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"376 ","pages":"Article 144285"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653525002279","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Valle de Bravo is a vital water supply for part of the metropolitan area of the Valle de Mexico megacity, providing 30% of Mexico City's water demand. This water body has experienced an acceleration in its trophic status, going from oligotrophic to eutrophic in just a few years. This temperate lake (at a tropical latitude) is in a persistent bloom dominated by a variety of co-occurring cyanobacteria, many of which have toxigenic potential based on microscopic identification, that makes it difficult or even impractical to identify the cyanotoxin producers. To unravel this complexity and directly identify the toxigenic genera, we showed that integrating classical approaches with metagenomic is required. We first characterized, from genes to metagenomes assembled genomes, the toxigenic Cyanobacteria. We found that Microcystis was the most dominant cyanobacterial genus and the sole carrier of the mcy operon, making it the only microcystin producer. We then quantified twenty-one different cyanopeptides, including twelve microcystin congeners using a high-performance liquid chromatography-high-resolution. Nine microcystins (MCs) and the emerging cyanotoxin anabaenopeptin-A and -B were found at varying concentrations throughout the year, with MC-LA being the most common and abundant. Our findings, constrained by our sampling strategy, indicate that conventional cyanotoxin biomarkers (e.g., toxin mcy genes) were not consistently reliable indicators of cyanotoxin concentrations in this freshwater system. In this study, we followed the dynamics of the cyanobacterial community and the associated cyanopeptides with unprecedented resolution. Our results have implications for better management of toxic blooms in this freshwater system, which supplies drinking water to more than 7 million people in the megalopolis of Valle de México.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信