Chengfang Yuan , Cheng Hu , Caibin Wu , Li Ling , Zongyan Zhou , Quan Li , Ziyu Zhou
{"title":"A new model for prediction of classification performance in closed circuit ball mill systems","authors":"Chengfang Yuan , Cheng Hu , Caibin Wu , Li Ling , Zongyan Zhou , Quan Li , Ziyu Zhou","doi":"10.1016/j.powtec.2025.120872","DOIUrl":null,"url":null,"abstract":"<div><div>The traditional model of closed circuit ball mill systems has been used for several decades, however, if the classifier of the closed circuit ball mill system performs the duties of both pre-classification and check-classification, the characterization error of the traditional model is large. To address this problem, a new model is proposed by modifying the traditional one. The results show that the new model characterizes the relative capacity of the ball mill more accurately, with a concentration of data at 65 % (classification efficiency) compared to the concentration of data at 50 % in the traditional model. The circulating load calculated by the new model is 360.81 %, and the corresponding slurry level in the ball mill is about 50 %, which is more consistent with the actual level. The new model has a higher accuracy than the traditional model in characterizing the production status of the grinding system, which is of some significance for industrial production.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"457 ","pages":"Article 120872"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025002670","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional model of closed circuit ball mill systems has been used for several decades, however, if the classifier of the closed circuit ball mill system performs the duties of both pre-classification and check-classification, the characterization error of the traditional model is large. To address this problem, a new model is proposed by modifying the traditional one. The results show that the new model characterizes the relative capacity of the ball mill more accurately, with a concentration of data at 65 % (classification efficiency) compared to the concentration of data at 50 % in the traditional model. The circulating load calculated by the new model is 360.81 %, and the corresponding slurry level in the ball mill is about 50 %, which is more consistent with the actual level. The new model has a higher accuracy than the traditional model in characterizing the production status of the grinding system, which is of some significance for industrial production.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.