Asymmetrical A-DA′D-A–type electron transport materials with enhanced electron mobility and water-resistant interface for perovskite solar cells

IF 6 2区 工程技术 Q2 ENERGY & FUELS
Qian Guo, Quan-Song Li
{"title":"Asymmetrical A-DA′D-A–type electron transport materials with enhanced electron mobility and water-resistant interface for perovskite solar cells","authors":"Qian Guo,&nbsp;Quan-Song Li","doi":"10.1016/j.solener.2025.113409","DOIUrl":null,"url":null,"abstract":"<div><div>Organic small-molecule electron transport materials (ETMs) exhibit fantastic potential in achieving high power conversion efficiency (PCE) of perovskite solar cells (PSCs). In this work, the novel asymmetric naphthalene diimide (NDI) derivatives were designed by fused-ring engineering and end-group engineering based on the symmetric NDI-based E molecule. These asymmetric NDI derivatives are designed by tuning thiophene units (A1, A2, and A3), introducing heteroatoms into the donor (B1, B2), and introducing asymmetric end groups (C1, C2, and C3). Quantum chemical calculations show that the energy levels of ETMs match well with MAPbI<sub>3</sub>. In addition, a strong linear correlation (R<sup>2</sup> &gt; 0.96) is observed between the LUMO energies, adiabatic electron affinities, and reorganization energies. Notably, the electron mobility of the asymmetric molecule B1 is enhanced by 16 times (0.851 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>) compared to the symmetric E molecule (0.053 cm<sup>2</sup>V<sup>−1</sup>s<sup>−1</sup>). The calculation shows that the designed asymmetric molecules exhibit robust interaction with perovskite, and the Bader charge indicates enhanced electron injection from the perovskite to the ETM. Furthermore, molecular dynamics simulations verified that the asymmetric structure (A2 and C3) can effectively prevent water from invading the perovskite surface. This asymmetric molecular design strategy provides insights for designing novel ETM for high performance PSCs.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"291 ","pages":"Article 113409"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001720","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Organic small-molecule electron transport materials (ETMs) exhibit fantastic potential in achieving high power conversion efficiency (PCE) of perovskite solar cells (PSCs). In this work, the novel asymmetric naphthalene diimide (NDI) derivatives were designed by fused-ring engineering and end-group engineering based on the symmetric NDI-based E molecule. These asymmetric NDI derivatives are designed by tuning thiophene units (A1, A2, and A3), introducing heteroatoms into the donor (B1, B2), and introducing asymmetric end groups (C1, C2, and C3). Quantum chemical calculations show that the energy levels of ETMs match well with MAPbI3. In addition, a strong linear correlation (R2 > 0.96) is observed between the LUMO energies, adiabatic electron affinities, and reorganization energies. Notably, the electron mobility of the asymmetric molecule B1 is enhanced by 16 times (0.851 cm2V−1s−1) compared to the symmetric E molecule (0.053 cm2V−1s−1). The calculation shows that the designed asymmetric molecules exhibit robust interaction with perovskite, and the Bader charge indicates enhanced electron injection from the perovskite to the ETM. Furthermore, molecular dynamics simulations verified that the asymmetric structure (A2 and C3) can effectively prevent water from invading the perovskite surface. This asymmetric molecular design strategy provides insights for designing novel ETM for high performance PSCs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信