Synergetic effects of multiple junction and surface hydroxyl in Cu/CuO/Cu2O/TiO2 heterostructures towards highly efficient photocatalysts for hydrogen generation
{"title":"Synergetic effects of multiple junction and surface hydroxyl in Cu/CuO/Cu2O/TiO2 heterostructures towards highly efficient photocatalysts for hydrogen generation","authors":"Riki Subagyo , Garcelina Rizky Anindika , Afif Akmal Aufkani , Lei Zhang , Hosta Ardhyananta , R.Y. Perry Burhan , Zjahra Vianita Nugraheni , Syafsir Akhlus , Hasliza Bahruji , Didik Prasetyoko , Diana Vanda Wellia , Atthar Luqman Ivansyah , Arramel , Yuly Kusumawati","doi":"10.1016/j.mset.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The implementation of titanium dioxide (TiO<sub>2</sub>) as a photocatalyst material in hydrogen (H<sub>2</sub>) evolution reaction (HER) has embarked renewed interest in the past decade. Rapid electron-hole pairs recombination and wide band gap of a photo-sensitive material of TiO<sub>2</sub> are detrimental toward the targeted catalytical reaction. In this study, we present the rational design, fabrication, photocatalytic performance of TiO<sub>2</sub>-Cu/CuO/Cu<sub>2</sub>O heterostructures (CuTi) using viable chemical reduction method. The Z-scheme and S-scheme are succesfully generated across the TiO<sub>2</sub>/CuO/Cu<sub>2</sub>O interfaces, while the Schottky junction arises on the Cu perimeters. This is evidenced from the blue shifted about 0.3 eV of Cu 2p core level determined by using X-ray photoemission spectroscopy (XPS), in combination with the formation of inverse V-shape of the Mott-Schottky plots. In addition, we find that Cu/CuO/Cu<sub>2</sub>O facilitates photon absorption range up to the visible region. The multiple heterojunction and the large number of OH<sub>surface</sub> enhanced charge carrier transfer are associated to the suppression of photoluminescence (PL) intensity, high surface hydroxyl (OH<sub>surface</sub>) density in CuTi probed by XPS, and fast electron transfer based on the electrochemical measurements. The presence of OH<sub>surface</sub> inhibits the recombination of electron. A significant H<sub>2</sub> photogeneration rate enhancement is achieved when an optimized 5 wt% Cu/CuO/Cu<sub>2</sub>O concentration is used on TiO<sub>2</sub> to achieve 7,157.19 μmol·g<sup>−1</sup> (1,789.30 μmol·g<sup>−1</sup>·h<sup>−1</sup>). Based on this finding, zero emission energy innitiative could be materialized under multiple heterojunctions in photocatalytic process is beneficial for enhancing the H<sub>2</sub> production.</div></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"8 ","pages":"Pages 131-142"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299125000023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
The implementation of titanium dioxide (TiO2) as a photocatalyst material in hydrogen (H2) evolution reaction (HER) has embarked renewed interest in the past decade. Rapid electron-hole pairs recombination and wide band gap of a photo-sensitive material of TiO2 are detrimental toward the targeted catalytical reaction. In this study, we present the rational design, fabrication, photocatalytic performance of TiO2-Cu/CuO/Cu2O heterostructures (CuTi) using viable chemical reduction method. The Z-scheme and S-scheme are succesfully generated across the TiO2/CuO/Cu2O interfaces, while the Schottky junction arises on the Cu perimeters. This is evidenced from the blue shifted about 0.3 eV of Cu 2p core level determined by using X-ray photoemission spectroscopy (XPS), in combination with the formation of inverse V-shape of the Mott-Schottky plots. In addition, we find that Cu/CuO/Cu2O facilitates photon absorption range up to the visible region. The multiple heterojunction and the large number of OHsurface enhanced charge carrier transfer are associated to the suppression of photoluminescence (PL) intensity, high surface hydroxyl (OHsurface) density in CuTi probed by XPS, and fast electron transfer based on the electrochemical measurements. The presence of OHsurface inhibits the recombination of electron. A significant H2 photogeneration rate enhancement is achieved when an optimized 5 wt% Cu/CuO/Cu2O concentration is used on TiO2 to achieve 7,157.19 μmol·g−1 (1,789.30 μmol·g−1·h−1). Based on this finding, zero emission energy innitiative could be materialized under multiple heterojunctions in photocatalytic process is beneficial for enhancing the H2 production.