Relativistic effects on the magnetic shielding in solids: First-principles computation in a plane wave code

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
J.W. Zwanziger, A.R. Farrant, U. Werner-Zwanziger
{"title":"Relativistic effects on the magnetic shielding in solids: First-principles computation in a plane wave code","authors":"J.W. Zwanziger,&nbsp;A.R. Farrant,&nbsp;U. Werner-Zwanziger","doi":"10.1016/j.jmr.2025.107861","DOIUrl":null,"url":null,"abstract":"<div><div>For computing the magnetic shielding in solids, density functional theory as implemented in a plane wave basis has proven to be a reasonably accurate and efficient framework, at least for lighter atoms through the third row of the periodic table. In materials with heavier atoms, terms not usually included in the electronic Hamiltonian can become significant, limiting accuracy. Here we derive and implement the zeroth-order regular approximation (ZORA) relativistic terms in the presence of both external magnetic fields and internal nuclear magnetic dipoles, to derive the ZORA-corrected magnetic shielding in the context of periodic boundary conditions and a plane wave basis. We describe our implementation in an open source code, <span>Abinit</span>, and show how it correctly predicts magnetic shieldings in various scenarios, for example the heavy atom next to light atom cases of the III–V semiconductors such as AlSb.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107861"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000333","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

For computing the magnetic shielding in solids, density functional theory as implemented in a plane wave basis has proven to be a reasonably accurate and efficient framework, at least for lighter atoms through the third row of the periodic table. In materials with heavier atoms, terms not usually included in the electronic Hamiltonian can become significant, limiting accuracy. Here we derive and implement the zeroth-order regular approximation (ZORA) relativistic terms in the presence of both external magnetic fields and internal nuclear magnetic dipoles, to derive the ZORA-corrected magnetic shielding in the context of periodic boundary conditions and a plane wave basis. We describe our implementation in an open source code, Abinit, and show how it correctly predicts magnetic shieldings in various scenarios, for example the heavy atom next to light atom cases of the III–V semiconductors such as AlSb.

Abstract Image

固体中磁屏蔽的相对论效应:平面波码的第一性原理计算
对于计算固体中的磁屏蔽,密度泛函理论在平面波基础上实现已被证明是一个相当准确和有效的框架,至少对于元素周期表第三行较轻的原子。在具有较重原子的材料中,通常不包括在电子哈密顿量中的项可能变得重要,从而限制了精度。本文推导并实现了外磁场和内核磁偶极子存在下的零阶正则逼近(ZORA)相对论性项,从而推导出周期边界条件和平面波基下的ZORA修正磁屏蔽。我们在开源代码Abinit中描述了我们的实现,并展示了它如何正确预测各种情况下的磁屏蔽,例如III-V半导体(如AlSb)的重原子与轻原子相邻的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信