{"title":"Relativistic effects on the magnetic shielding in solids: First-principles computation in a plane wave code","authors":"J.W. Zwanziger, A.R. Farrant, U. Werner-Zwanziger","doi":"10.1016/j.jmr.2025.107861","DOIUrl":null,"url":null,"abstract":"<div><div>For computing the magnetic shielding in solids, density functional theory as implemented in a plane wave basis has proven to be a reasonably accurate and efficient framework, at least for lighter atoms through the third row of the periodic table. In materials with heavier atoms, terms not usually included in the electronic Hamiltonian can become significant, limiting accuracy. Here we derive and implement the zeroth-order regular approximation (ZORA) relativistic terms in the presence of both external magnetic fields and internal nuclear magnetic dipoles, to derive the ZORA-corrected magnetic shielding in the context of periodic boundary conditions and a plane wave basis. We describe our implementation in an open source code, <span>Abinit</span>, and show how it correctly predicts magnetic shieldings in various scenarios, for example the heavy atom next to light atom cases of the III–V semiconductors such as AlSb.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107861"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000333","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
For computing the magnetic shielding in solids, density functional theory as implemented in a plane wave basis has proven to be a reasonably accurate and efficient framework, at least for lighter atoms through the third row of the periodic table. In materials with heavier atoms, terms not usually included in the electronic Hamiltonian can become significant, limiting accuracy. Here we derive and implement the zeroth-order regular approximation (ZORA) relativistic terms in the presence of both external magnetic fields and internal nuclear magnetic dipoles, to derive the ZORA-corrected magnetic shielding in the context of periodic boundary conditions and a plane wave basis. We describe our implementation in an open source code, Abinit, and show how it correctly predicts magnetic shieldings in various scenarios, for example the heavy atom next to light atom cases of the III–V semiconductors such as AlSb.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.