Chunyun Wang , Zongkai Wang , Hongxiang Lou , Xianling Wang , Xiaoqiang Tan , Dongli Shao , Mengzhen Liu , Jianqin Gao , Jiefu Zhang , Bo Wang , Jie Kuai , Jing Wang , Zhenghua Xu , Guangsheng Zhou , Jie Zhao
{"title":"Optimized tillage regimes in a rice-oilseed rape rotation system enhance system productivity by delaying post-flowering senescence","authors":"Chunyun Wang , Zongkai Wang , Hongxiang Lou , Xianling Wang , Xiaoqiang Tan , Dongli Shao , Mengzhen Liu , Jianqin Gao , Jiefu Zhang , Bo Wang , Jie Kuai , Jing Wang , Zhenghua Xu , Guangsheng Zhou , Jie Zhao","doi":"10.1016/j.fcr.2025.109839","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><div>In the Yangtze River Basin (YRB), soil compaction and inappropriate tillage practices hinder crop yield improvement in the rice-oilseed rape rotation system. Hence, exploring suitable tillage regimes and their impacts on crop yield formation is essential for agricultural development in this region.</div></div><div><h3>Objective</h3><div>This study aims to investigate the effects of an optimized tillage regime on post-flowering senescence and yield formation in the rice–oilseed rape rotation system, providing a theoretical foundation for the development of high-productivity tillage management systems in the YRB region.</div></div><div><h3>Methods</h3><div>A five-year field experiment was conducted, employing shallow tillage (ST) and moderate deep tillage (MT, 20–25 cm tillage depth) in the oilseed rape season, followed by no-tillage (NT) in the rice season. Key parameters evaluated included soil compaction, post-flowering physiological activity in roots and photosynthetic organs, pre-flowering dry matter translocation, and crop yield.</div></div><div><h3>Results</h3><div>Compared with ST, MT significantly reduced soil compaction in the 15–35 cm soil layer during the oilseed rape season and in the 20–35 cm layer during the subsequent NT rice season. The reduced soil compaction under MT enhanced post-flowering root activity and root xylem sap in both crops, promoting nutrient uptake. MT increased antioxidant enzyme activity, nitrogen and total chlorophyll contents while reducing O<sub>2</sub><sup>-</sup>, H<sub>2</sub>O<sub>2</sub> and malondialdehyde levels in oilseed rape silique walls and rice flag leaves, indicating delayed post-flowering senescence. Pre-flowering dry matter translocation rate and its contribution to yield significantly increased under MT, resulting in oilseed rape and rice yield increases of 23.9 % and 18.3 %, respectively. Furthermore, increasing planting density from 25 × 10<sup>4</sup> hills ha<sup>−1</sup> to 37.5 × 10<sup>4</sup> hills ha<sup>−1</sup> resulted in a 6.2 % and 11.2 % increase in rice yield, respectively, under the ST/NT and MT/NT, indicating that the yield of NT rice can be enhanced by further improving planting density under MT in the oilseed rape season.</div></div><div><h3>Conclusion</h3><div>Implementing MT in the oilseed rape season, followed by NT in the rice season, enhances crop yield by delaying post-flowering senescence and promoting pre-flowering dry matter translocation to seeds. This optimized tillage regime holds great potential as a sustainable paddy-upland rotation production technology with broad application prospects in China and beyond.</div></div>","PeriodicalId":12143,"journal":{"name":"Field Crops Research","volume":"326 ","pages":"Article 109839"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Field Crops Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378429025001042","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
In the Yangtze River Basin (YRB), soil compaction and inappropriate tillage practices hinder crop yield improvement in the rice-oilseed rape rotation system. Hence, exploring suitable tillage regimes and their impacts on crop yield formation is essential for agricultural development in this region.
Objective
This study aims to investigate the effects of an optimized tillage regime on post-flowering senescence and yield formation in the rice–oilseed rape rotation system, providing a theoretical foundation for the development of high-productivity tillage management systems in the YRB region.
Methods
A five-year field experiment was conducted, employing shallow tillage (ST) and moderate deep tillage (MT, 20–25 cm tillage depth) in the oilseed rape season, followed by no-tillage (NT) in the rice season. Key parameters evaluated included soil compaction, post-flowering physiological activity in roots and photosynthetic organs, pre-flowering dry matter translocation, and crop yield.
Results
Compared with ST, MT significantly reduced soil compaction in the 15–35 cm soil layer during the oilseed rape season and in the 20–35 cm layer during the subsequent NT rice season. The reduced soil compaction under MT enhanced post-flowering root activity and root xylem sap in both crops, promoting nutrient uptake. MT increased antioxidant enzyme activity, nitrogen and total chlorophyll contents while reducing O2-, H2O2 and malondialdehyde levels in oilseed rape silique walls and rice flag leaves, indicating delayed post-flowering senescence. Pre-flowering dry matter translocation rate and its contribution to yield significantly increased under MT, resulting in oilseed rape and rice yield increases of 23.9 % and 18.3 %, respectively. Furthermore, increasing planting density from 25 × 104 hills ha−1 to 37.5 × 104 hills ha−1 resulted in a 6.2 % and 11.2 % increase in rice yield, respectively, under the ST/NT and MT/NT, indicating that the yield of NT rice can be enhanced by further improving planting density under MT in the oilseed rape season.
Conclusion
Implementing MT in the oilseed rape season, followed by NT in the rice season, enhances crop yield by delaying post-flowering senescence and promoting pre-flowering dry matter translocation to seeds. This optimized tillage regime holds great potential as a sustainable paddy-upland rotation production technology with broad application prospects in China and beyond.
期刊介绍:
Field Crops Research is an international journal publishing scientific articles on:
√ experimental and modelling research at field, farm and landscape levels
on temperate and tropical crops and cropping systems,
with a focus on crop ecology and physiology, agronomy, and plant genetics and breeding.