Amaia Cabrejas-Olalla , Frank G. Jørgensen , Jade Y. Cheng , Peter C. Kjærgaard , Mikkel H. Schierup , Thomas Mailund , Georgios Athanasiadis
{"title":"Genetic predictions of eye and hair colour in the Danish population","authors":"Amaia Cabrejas-Olalla , Frank G. Jørgensen , Jade Y. Cheng , Peter C. Kjærgaard , Mikkel H. Schierup , Thomas Mailund , Georgios Athanasiadis","doi":"10.1016/j.fsigen.2025.103267","DOIUrl":null,"url":null,"abstract":"<div><div>Genetic predictions of eye and hair colour are prominent examples of forensic DNA phenotyping that can help resolve criminal cases. The advent of high-throughput genotyping technologies in forensic genetics opens up the possibility of applying polygenic risk scores in forensic settings. In this work, we compare the performance of HIrisPlex with PRSice-2 in predicting eye and hair colour to gain insights into the relative benefits of new approaches. Predictions were carried out on 584 Danish high school students for which genetic and self-reported phenotype data were available. Prediction of brown eye colour was very accurate (AUC = 0.98), followed by blue eye colour (AUC = 0.82), while it failed for intermediate eye colour (AUC = 0.57). As for hair colour, red and black were overall better predicted than blond and brown, and PRSice-2 performed better in all but the black hair colour. Despite the limitations of the study, HIrisPlex exhibited its usual high performance in the prediction of brown and blue eye colour, as well as red and black hair colour. However, PRSice-2 offered overall improvements in hair colour prediction over HIrisPlex suggesting that there is room for improvement in forensic DNA phenotyping by using polygenic risk scores.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103267"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187249732500047X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic predictions of eye and hair colour are prominent examples of forensic DNA phenotyping that can help resolve criminal cases. The advent of high-throughput genotyping technologies in forensic genetics opens up the possibility of applying polygenic risk scores in forensic settings. In this work, we compare the performance of HIrisPlex with PRSice-2 in predicting eye and hair colour to gain insights into the relative benefits of new approaches. Predictions were carried out on 584 Danish high school students for which genetic and self-reported phenotype data were available. Prediction of brown eye colour was very accurate (AUC = 0.98), followed by blue eye colour (AUC = 0.82), while it failed for intermediate eye colour (AUC = 0.57). As for hair colour, red and black were overall better predicted than blond and brown, and PRSice-2 performed better in all but the black hair colour. Despite the limitations of the study, HIrisPlex exhibited its usual high performance in the prediction of brown and blue eye colour, as well as red and black hair colour. However, PRSice-2 offered overall improvements in hair colour prediction over HIrisPlex suggesting that there is room for improvement in forensic DNA phenotyping by using polygenic risk scores.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.