{"title":"Study on 3D printability of PLA/PBAT/PHBV biodegradable blends for packaging applications","authors":"Annalisa Apicella, Paola Scarfato, Loredana Incarnato","doi":"10.1016/j.polymertesting.2025.108748","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing offers a fast and cost-effective pathway to develop new sustainable, multifunctional packaging prototypes. However, the range of biodegradable polymers suitable for this technology is still critically narrow. Poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) possess favorable barrier, mechanical properties and biodegradability; however, its low thermal stability and poor melt strength pose severe challenges in 3D printing process. On their side, PBAT-rich Ecovio blends provide high ductility and thermal stability but suffer from buckling issues due to excessive flexibility of the filaments. To address these concerns, this study systematically evaluates the role of PHBV in Ecovio-based blends for 3D printing, providing new insights into the relationship between blend composition, processability and dimensional stability, for the development of new packaging prototypes using fused deposition modeling (FDM). The printing temperature (from 200 to 250 °C) and the blends composition (up to 40 % PHBV concentration) were optimized to enhance the printability, the dimensional accuracy and the mechanical properties of the specimens for the target application, based on preliminary characterization of chemical, thermal, rheological and morphological investigations. Results showed that the incorporation of PHBV into the blends at concentrations ≥20 % ensured a decrease in viscosity and adequate rigidity to guarantee successful 3D printing, while Ecovio increased the thermal stability of PHBV and expanded the processing window, enabling the blends to be printed up to 250 °C. Among all, the Ecovio/PHBV 70/30 blend printed at 230 °C demonstrated to be best combination of composition and temperature to achieve better compactness, flexural properties and optimized processability, while minimizing warpage, shrinkage and degradation phenomena, making it a promising candidate for the realization of novel, sustainable packaging prototypes. Finally, overall migration tests demonstrated the compliance of the developed packages to the limits of Regulation (EU) No October 2011 for food contact applications.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"145 ","pages":"Article 108748"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000625","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing offers a fast and cost-effective pathway to develop new sustainable, multifunctional packaging prototypes. However, the range of biodegradable polymers suitable for this technology is still critically narrow. Poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) possess favorable barrier, mechanical properties and biodegradability; however, its low thermal stability and poor melt strength pose severe challenges in 3D printing process. On their side, PBAT-rich Ecovio blends provide high ductility and thermal stability but suffer from buckling issues due to excessive flexibility of the filaments. To address these concerns, this study systematically evaluates the role of PHBV in Ecovio-based blends for 3D printing, providing new insights into the relationship between blend composition, processability and dimensional stability, for the development of new packaging prototypes using fused deposition modeling (FDM). The printing temperature (from 200 to 250 °C) and the blends composition (up to 40 % PHBV concentration) were optimized to enhance the printability, the dimensional accuracy and the mechanical properties of the specimens for the target application, based on preliminary characterization of chemical, thermal, rheological and morphological investigations. Results showed that the incorporation of PHBV into the blends at concentrations ≥20 % ensured a decrease in viscosity and adequate rigidity to guarantee successful 3D printing, while Ecovio increased the thermal stability of PHBV and expanded the processing window, enabling the blends to be printed up to 250 °C. Among all, the Ecovio/PHBV 70/30 blend printed at 230 °C demonstrated to be best combination of composition and temperature to achieve better compactness, flexural properties and optimized processability, while minimizing warpage, shrinkage and degradation phenomena, making it a promising candidate for the realization of novel, sustainable packaging prototypes. Finally, overall migration tests demonstrated the compliance of the developed packages to the limits of Regulation (EU) No October 2011 for food contact applications.
期刊介绍:
Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization.
The scope includes but is not limited to the following main topics:
Novel testing methods and Chemical analysis
• mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology
Physical properties and behaviour of novel polymer systems
• nanoscale properties, morphology, transport properties
Degradation and recycling of polymeric materials when combined with novel testing or characterization methods
• degradation, biodegradation, ageing and fire retardancy
Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.