Study on 3D printability of PLA/PBAT/PHBV biodegradable blends for packaging applications

IF 5 2区 材料科学 Q1 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Annalisa Apicella, Paola Scarfato, Loredana Incarnato
{"title":"Study on 3D printability of PLA/PBAT/PHBV biodegradable blends for packaging applications","authors":"Annalisa Apicella,&nbsp;Paola Scarfato,&nbsp;Loredana Incarnato","doi":"10.1016/j.polymertesting.2025.108748","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing offers a fast and cost-effective pathway to develop new sustainable, multifunctional packaging prototypes. However, the range of biodegradable polymers suitable for this technology is still critically narrow. Poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) possess favorable barrier, mechanical properties and biodegradability; however, its low thermal stability and poor melt strength pose severe challenges in 3D printing process. On their side, PBAT-rich Ecovio blends provide high ductility and thermal stability but suffer from buckling issues due to excessive flexibility of the filaments. To address these concerns, this study systematically evaluates the role of PHBV in Ecovio-based blends for 3D printing, providing new insights into the relationship between blend composition, processability and dimensional stability, for the development of new packaging prototypes using fused deposition modeling (FDM). The printing temperature (from 200 to 250 °C) and the blends composition (up to 40 % PHBV concentration) were optimized to enhance the printability, the dimensional accuracy and the mechanical properties of the specimens for the target application, based on preliminary characterization of chemical, thermal, rheological and morphological investigations. Results showed that the incorporation of PHBV into the blends at concentrations ≥20 % ensured a decrease in viscosity and adequate rigidity to guarantee successful 3D printing, while Ecovio increased the thermal stability of PHBV and expanded the processing window, enabling the blends to be printed up to 250 °C. Among all, the Ecovio/PHBV 70/30 blend printed at 230 °C demonstrated to be best combination of composition and temperature to achieve better compactness, flexural properties and optimized processability, while minimizing warpage, shrinkage and degradation phenomena, making it a promising candidate for the realization of novel, sustainable packaging prototypes. Finally, overall migration tests demonstrated the compliance of the developed packages to the limits of Regulation (EU) No October 2011 for food contact applications.</div></div>","PeriodicalId":20628,"journal":{"name":"Polymer Testing","volume":"145 ","pages":"Article 108748"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Testing","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142941825000625","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing offers a fast and cost-effective pathway to develop new sustainable, multifunctional packaging prototypes. However, the range of biodegradable polymers suitable for this technology is still critically narrow. Poly (3-hydroxybutyrate-co-3-hydroxy valerate) (PHBV) possess favorable barrier, mechanical properties and biodegradability; however, its low thermal stability and poor melt strength pose severe challenges in 3D printing process. On their side, PBAT-rich Ecovio blends provide high ductility and thermal stability but suffer from buckling issues due to excessive flexibility of the filaments. To address these concerns, this study systematically evaluates the role of PHBV in Ecovio-based blends for 3D printing, providing new insights into the relationship between blend composition, processability and dimensional stability, for the development of new packaging prototypes using fused deposition modeling (FDM). The printing temperature (from 200 to 250 °C) and the blends composition (up to 40 % PHBV concentration) were optimized to enhance the printability, the dimensional accuracy and the mechanical properties of the specimens for the target application, based on preliminary characterization of chemical, thermal, rheological and morphological investigations. Results showed that the incorporation of PHBV into the blends at concentrations ≥20 % ensured a decrease in viscosity and adequate rigidity to guarantee successful 3D printing, while Ecovio increased the thermal stability of PHBV and expanded the processing window, enabling the blends to be printed up to 250 °C. Among all, the Ecovio/PHBV 70/30 blend printed at 230 °C demonstrated to be best combination of composition and temperature to achieve better compactness, flexural properties and optimized processability, while minimizing warpage, shrinkage and degradation phenomena, making it a promising candidate for the realization of novel, sustainable packaging prototypes. Finally, overall migration tests demonstrated the compliance of the developed packages to the limits of Regulation (EU) No October 2011 for food contact applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Testing
Polymer Testing 工程技术-材料科学:表征与测试
CiteScore
10.70
自引率
5.90%
发文量
328
审稿时长
44 days
期刊介绍: Polymer Testing focuses on the testing, analysis and characterization of polymer materials, including both synthetic and natural or biobased polymers. Novel testing methods and the testing of novel polymeric materials in bulk, solution and dispersion is covered. In addition, we welcome the submission of the testing of polymeric materials for a wide range of applications and industrial products as well as nanoscale characterization. The scope includes but is not limited to the following main topics: Novel testing methods and Chemical analysis • mechanical, thermal, electrical, chemical, imaging, spectroscopy, scattering and rheology Physical properties and behaviour of novel polymer systems • nanoscale properties, morphology, transport properties Degradation and recycling of polymeric materials when combined with novel testing or characterization methods • degradation, biodegradation, ageing and fire retardancy Modelling and Simulation work will be only considered when it is linked to new or previously published experimental results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信