Kai Meng , Yingbo Dong , Junfei Liu , Jiquan Xie , Qi Jin , Yanrong Lu , Hai Lin
{"title":"Advances in selective heavy metal removal from water using biochar: A comprehensive review of mechanisms and modifications","authors":"Kai Meng , Yingbo Dong , Junfei Liu , Jiquan Xie , Qi Jin , Yanrong Lu , Hai Lin","doi":"10.1016/j.jece.2025.116099","DOIUrl":null,"url":null,"abstract":"<div><div>Heavy metals are common pollutants in the aquatic environment that are difficult to degrade and harmful. Biochar has emerged as a promising material for heavy metal remediation in water due to its advantages such as high surface area, strong adsorption capacity, and low cost. However, current research primarily focuses on single-pollutant systems, whereas actual water bodies often contain coexisting multiple metal ions. Competitive adsorption among these ions significantly interferes with the selective removal efficiency of biochar. This paper systematically reviews the latest advances in biochar-based selective adsorption materials, and explores the influence of inherent properties such as feedstock type, pore structure, and surface functional groups on adsorption performance. It reveals key mechanisms including surface complexation, ion exchange, and electrostatic attraction, and summarizes the remarkable effects of modification techniques such as acid treatment and metal impregnation. In addition, this paper analyzes the selective adsorption behaviors and mechanisms of biochar toward typical heavy metals such as cadmium, lead, and chromium. Finally, it highlights current research gaps, including uncertainties in biochar production, application, long-term stability, and environmental risks, while also outlining future research directions. This work aims to provide theoretical guidance and technical support for the design and application of biochar materials.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 2","pages":"Article 116099"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221334372500795X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Heavy metals are common pollutants in the aquatic environment that are difficult to degrade and harmful. Biochar has emerged as a promising material for heavy metal remediation in water due to its advantages such as high surface area, strong adsorption capacity, and low cost. However, current research primarily focuses on single-pollutant systems, whereas actual water bodies often contain coexisting multiple metal ions. Competitive adsorption among these ions significantly interferes with the selective removal efficiency of biochar. This paper systematically reviews the latest advances in biochar-based selective adsorption materials, and explores the influence of inherent properties such as feedstock type, pore structure, and surface functional groups on adsorption performance. It reveals key mechanisms including surface complexation, ion exchange, and electrostatic attraction, and summarizes the remarkable effects of modification techniques such as acid treatment and metal impregnation. In addition, this paper analyzes the selective adsorption behaviors and mechanisms of biochar toward typical heavy metals such as cadmium, lead, and chromium. Finally, it highlights current research gaps, including uncertainties in biochar production, application, long-term stability, and environmental risks, while also outlining future research directions. This work aims to provide theoretical guidance and technical support for the design and application of biochar materials.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.