A facile ultrasound-assisted synthesis and DFT evaluation of 3D hierarchical tin disulfide nanoflowers

Bayu Tri Murti , Athika Darumas Putri , Ma’rifatun Izati , Mazaya Sulaekhah , Ching-Yun Chen , Po-Kang Yang
{"title":"A facile ultrasound-assisted synthesis and DFT evaluation of 3D hierarchical tin disulfide nanoflowers","authors":"Bayu Tri Murti ,&nbsp;Athika Darumas Putri ,&nbsp;Ma’rifatun Izati ,&nbsp;Mazaya Sulaekhah ,&nbsp;Ching-Yun Chen ,&nbsp;Po-Kang Yang","doi":"10.1016/j.nxmate.2025.100579","DOIUrl":null,"url":null,"abstract":"<div><div>Tin disulfide (SnS<sub>2</sub>), one of the 2D transition metal chalcogenide families, has recently received tremendous attention due to its stack geometry, precisely controllable structure and properties, tunable bandgap, and biocompatibility enabling a wide range of applications in sensors, supercapacitors, and flexible electronics. In this study, 3D hierarchical SnS<sub>2</sub> nanoflower (f-SnS<sub>2</sub>) was synthesized <em>via</em> simple, versatile, and green ultrasound treatment at ambient temperature. The indirect ultrasound was applied with a frequency of 40 kHz. The product was examined with optical imaging, particle size and zeta potential analyzer, SEM, and EDX, resulting in homogenous material distribution and microstructural characteristics of as-synthesized f-SnS<sub>2</sub>. The chemical composition and crystallographic information of f-SnS<sub>2</sub> were characterized by XRD, Raman spectroscopy, and HR-TEM. In addition, their electronic bandgap and active-site distribution were elucidated through DMol3-based density-functional calculations. These results demonstrated the successful synthesis of f-SnS<sub>2</sub> in facile and reagent-less laboratory settings as well as the electrostatic potential distribution at edge-active sites. The Monte Carlo adsorption study of SnS<sub>2</sub> towards toxic and pollutant gases (H<sub>2</sub>, CO<sub>2</sub>, and CO) revealed that the material has great potential for gas sensing applications.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100579"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825000978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tin disulfide (SnS2), one of the 2D transition metal chalcogenide families, has recently received tremendous attention due to its stack geometry, precisely controllable structure and properties, tunable bandgap, and biocompatibility enabling a wide range of applications in sensors, supercapacitors, and flexible electronics. In this study, 3D hierarchical SnS2 nanoflower (f-SnS2) was synthesized via simple, versatile, and green ultrasound treatment at ambient temperature. The indirect ultrasound was applied with a frequency of 40 kHz. The product was examined with optical imaging, particle size and zeta potential analyzer, SEM, and EDX, resulting in homogenous material distribution and microstructural characteristics of as-synthesized f-SnS2. The chemical composition and crystallographic information of f-SnS2 were characterized by XRD, Raman spectroscopy, and HR-TEM. In addition, their electronic bandgap and active-site distribution were elucidated through DMol3-based density-functional calculations. These results demonstrated the successful synthesis of f-SnS2 in facile and reagent-less laboratory settings as well as the electrostatic potential distribution at edge-active sites. The Monte Carlo adsorption study of SnS2 towards toxic and pollutant gases (H2, CO2, and CO) revealed that the material has great potential for gas sensing applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信