Study of manganese substitutions in hydroxyapatite using density functional theory methods: Optical and magnetic properties

Vladimir Bystrov , Ekaterina Paramonova , Leon Avakyan , Svetlana Makarova , Natalia Bulina
{"title":"Study of manganese substitutions in hydroxyapatite using density functional theory methods: Optical and magnetic properties","authors":"Vladimir Bystrov ,&nbsp;Ekaterina Paramonova ,&nbsp;Leon Avakyan ,&nbsp;Svetlana Makarova ,&nbsp;Natalia Bulina","doi":"10.1016/j.nxmate.2025.100583","DOIUrl":null,"url":null,"abstract":"<div><div>Being the mineral component of the bone tissue, hydroxyapatite (HAP) is widely used in medicine for the bone tissue restoration. The crystal structure of HAP is very flexible and easily integrates various ions, which affects the properties of HAP. This paper presents the data for modeling the Mn-HAP lattice with various Mn/Ca substitutions obtained using calculations of the density functional theory. Experimental data on the synthesis of Mn-HAP by the mechanochemical method are also presented. The calculated and experimental data show good agreement: the unit cell parameters and volume decrease with increasing Mn/Ca substitution. These results on the behavior of structural parameters are similar to the results obtained for Mg/Ca substitutions in Mg-HAP. However, there are significant differences in the changes in the electronic and optical properties for these substituents. Additional electronic energy levels Ei were detected inside the band gap Eg of Mn-HAP, while Mg-HAP did not have energy levels inside the band gap, only the width of the Eg changed. Depending on the concentration of Mn, the photoexcitation energy changes, and its effective value Eg* becomes less than the band gap Eg in the unsubstituted HAP. The arisen magnetic properties of Mn-HAP are proportional to the amount of Mn introduced and energy levels Ei, filled by spin-up electrons. The formation energy of Mn/Ca substitution depends on the position and concentration of Mn. It was found that substitution is more preferable for the Ca2 position.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100583"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Being the mineral component of the bone tissue, hydroxyapatite (HAP) is widely used in medicine for the bone tissue restoration. The crystal structure of HAP is very flexible and easily integrates various ions, which affects the properties of HAP. This paper presents the data for modeling the Mn-HAP lattice with various Mn/Ca substitutions obtained using calculations of the density functional theory. Experimental data on the synthesis of Mn-HAP by the mechanochemical method are also presented. The calculated and experimental data show good agreement: the unit cell parameters and volume decrease with increasing Mn/Ca substitution. These results on the behavior of structural parameters are similar to the results obtained for Mg/Ca substitutions in Mg-HAP. However, there are significant differences in the changes in the electronic and optical properties for these substituents. Additional electronic energy levels Ei were detected inside the band gap Eg of Mn-HAP, while Mg-HAP did not have energy levels inside the band gap, only the width of the Eg changed. Depending on the concentration of Mn, the photoexcitation energy changes, and its effective value Eg* becomes less than the band gap Eg in the unsubstituted HAP. The arisen magnetic properties of Mn-HAP are proportional to the amount of Mn introduced and energy levels Ei, filled by spin-up electrons. The formation energy of Mn/Ca substitution depends on the position and concentration of Mn. It was found that substitution is more preferable for the Ca2 position.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信