Functional diversity of two apple paralogs MADS5 and MADS35 in regulating flowering and parthenocarpy

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Yanfang Yan , Peiyi Dang , Bingning Tian , Ying Chen , Xiaoning Li , Fengwang Ma , Jia-Long Yao , Pengmin Li
{"title":"Functional diversity of two apple paralogs MADS5 and MADS35 in regulating flowering and parthenocarpy","authors":"Yanfang Yan ,&nbsp;Peiyi Dang ,&nbsp;Bingning Tian ,&nbsp;Ying Chen ,&nbsp;Xiaoning Li ,&nbsp;Fengwang Ma ,&nbsp;Jia-Long Yao ,&nbsp;Pengmin Li","doi":"10.1016/j.plaphy.2025.109763","DOIUrl":null,"url":null,"abstract":"<div><div>MADS-box genes play important roles in plant development, especially flowering and fruiting. In this study, we identified 54 type I and 69 type II MADS-box genes from the apple reference genome ‘GDDH13’. The type II MADS-box genes were further divided into 12 closely related subgroups, each exhibiting similar gene structures and conserved domains. Among these, two genes, <em>MADS35</em> and <em>MADS5,</em> belonging to APETALA1 (AP1) subfamily, were found to be predominantly expressed in apple fruit. To explore their functions, transgenic apple plants with altered expression of these genes were produced. Overexpression of <em>MADS35</em> induced early flowering, while overexpression of <em>MADS5</em> induced both early flowering and parthenocarpy. Transcriptome analysis suggested that the parthenocarpy observed in the transgenic apple plants might be associated with changes of gene expression within the auxin, GA, ABA, and ethylene signaling pathways. MADS5 and MADS35, although paralogs, differ by one amino acid in the MADS-domain and six amino acids in the K-domain, which could account for their function diversity in regulating apple fruiting. In summary, the present study provides a comprehensive analysis of MADS-box genes in apple and lays the foundation for future efforts to shorten the juvenile stage and enhance parthenocarpy-related traits in apple plants.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"222 ","pages":"Article 109763"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0981942825002918","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

MADS-box genes play important roles in plant development, especially flowering and fruiting. In this study, we identified 54 type I and 69 type II MADS-box genes from the apple reference genome ‘GDDH13’. The type II MADS-box genes were further divided into 12 closely related subgroups, each exhibiting similar gene structures and conserved domains. Among these, two genes, MADS35 and MADS5, belonging to APETALA1 (AP1) subfamily, were found to be predominantly expressed in apple fruit. To explore their functions, transgenic apple plants with altered expression of these genes were produced. Overexpression of MADS35 induced early flowering, while overexpression of MADS5 induced both early flowering and parthenocarpy. Transcriptome analysis suggested that the parthenocarpy observed in the transgenic apple plants might be associated with changes of gene expression within the auxin, GA, ABA, and ethylene signaling pathways. MADS5 and MADS35, although paralogs, differ by one amino acid in the MADS-domain and six amino acids in the K-domain, which could account for their function diversity in regulating apple fruiting. In summary, the present study provides a comprehensive analysis of MADS-box genes in apple and lays the foundation for future efforts to shorten the juvenile stage and enhance parthenocarpy-related traits in apple plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信