Impact of dissociated methanol gas direct injection strategy on performance of port-injection methanol engines under dilution combustion condition

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Wang Xiangyang, Liu Yu, Li Xiaoping, Jiang Beiping, Xie Fangxi, Jin Zhaohui, Dou Huili
{"title":"Impact of dissociated methanol gas direct injection strategy on performance of port-injection methanol engines under dilution combustion condition","authors":"Wang Xiangyang,&nbsp;Liu Yu,&nbsp;Li Xiaoping,&nbsp;Jiang Beiping,&nbsp;Xie Fangxi,&nbsp;Jin Zhaohui,&nbsp;Dou Huili","doi":"10.1016/j.energy.2025.135503","DOIUrl":null,"url":null,"abstract":"<div><div>Methanol is the most promising carbon-neutral alternative fuel for the future. This paper studies the impact of DMG (dissociated methanol gas) double injection parameters in a methanol port injection engine to enhance the improvement of DMG on methanol dilution combustion performance. Additionally, it seeks to understand the optimization results of DMG direct double injection parameters for combustion performance at different DMG blending ratios. Optimizing DMG double injection parameters can effectively shorten CA10-IG (crank angle corresponding of 0 %–10 % heat release) and CA90-CA10 (crank angle corresponding of 10 %–90 % heat release), and reduce HC (hydrocarbons) and CO (carbon monoxide) emissions, BSFC (brake specific fuel consumption) and COV<sub>IMEP</sub> (coefficient of variation of indicated mean effective pressure), while slightly rising NOx (nitrogen oxides) emissions. As DMG blending ratio rises, optimization results of first and second injection timings remain constant, while second injection ratio decreases, reaching 40 %, 20 %, and 20 % at blending ratios of 10 %, 15 %, and 20 %. Moreover, DMG double injection extends the dilution combustion limit compared to single injection. At blending ratios of 10 %, 15 %, and 20 %, double injection reduces BSFC by 2.8 %, 1.4 %, and 1.2 % at the dilution combustion limit compared to single injection.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"321 ","pages":"Article 135503"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225011454","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol is the most promising carbon-neutral alternative fuel for the future. This paper studies the impact of DMG (dissociated methanol gas) double injection parameters in a methanol port injection engine to enhance the improvement of DMG on methanol dilution combustion performance. Additionally, it seeks to understand the optimization results of DMG direct double injection parameters for combustion performance at different DMG blending ratios. Optimizing DMG double injection parameters can effectively shorten CA10-IG (crank angle corresponding of 0 %–10 % heat release) and CA90-CA10 (crank angle corresponding of 10 %–90 % heat release), and reduce HC (hydrocarbons) and CO (carbon monoxide) emissions, BSFC (brake specific fuel consumption) and COVIMEP (coefficient of variation of indicated mean effective pressure), while slightly rising NOx (nitrogen oxides) emissions. As DMG blending ratio rises, optimization results of first and second injection timings remain constant, while second injection ratio decreases, reaching 40 %, 20 %, and 20 % at blending ratios of 10 %, 15 %, and 20 %. Moreover, DMG double injection extends the dilution combustion limit compared to single injection. At blending ratios of 10 %, 15 %, and 20 %, double injection reduces BSFC by 2.8 %, 1.4 %, and 1.2 % at the dilution combustion limit compared to single injection.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信