{"title":"Enhancing starch properties through dual modification: Ultrasonication and acetic acid treatment of non-conventional starches","authors":"Likhitha Yadav Prakruthi , Hari Krishnan , Tamma Medha , K. Kumarakuru , P. Vasantha Kumari , Challa Surekha , Hemasundar Alavilli , Deepika Kaushik , Abeer Hashem , Nouf H. Alotaibi , Graciela Dolores Avila-Quezada , Elsayed Fathi Abd_Allah , Mukul Kumar , Chagam Koteswara Reddy","doi":"10.1016/j.ultsonch.2025.107301","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effects of ultrasonication (US) and acetic acid treatments on starches extracted from non-conventional sources: elephant foot yam (NES), cassava (NCS) and sweet potato (NSP). The starches underwent ultrasonication at 40°C for 3, 9, and 15 min, followed by acetylation, with native starches used as control. The morphological, physicochemical, and functional properties were comprehensively analyzed. Results revealed that increased treatment time significantly (<em>p</em><0.05) affected the starches functional properties, morphology and crystallinity. Amylose content was highest in NES (22.85 %), followed by NSP (21.05 %) and NCS (19.28 %). Following dual modification, a significant reduction in amylose content was observed in ultrasonic-assisted acetylated starches. Morphological analysis revealed granular aggregation, surface changes, and the formation of pores and cracks. X-ray diffraction (XRD) patterns demonstrated that NSP and NES starches exhibited major peaks characteristic of C-type starches, while NCS starches displayed an A-type pattern. Following ultrasound-assisted acetylation, the crystalline structures of all starches remained largely unchanged, although relative crystallinity slightly decreased compared to native starches. The oil absorption capacity and tap density of NES increased with dual modification, suggesting enhanced hydrophobicity. These findings highlight the potential of dual modification to improve starch properties for industrial applications, including confectionery, edible films, tablet binders, and encapsulation.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"115 ","pages":"Article 107301"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772500080X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effects of ultrasonication (US) and acetic acid treatments on starches extracted from non-conventional sources: elephant foot yam (NES), cassava (NCS) and sweet potato (NSP). The starches underwent ultrasonication at 40°C for 3, 9, and 15 min, followed by acetylation, with native starches used as control. The morphological, physicochemical, and functional properties were comprehensively analyzed. Results revealed that increased treatment time significantly (p<0.05) affected the starches functional properties, morphology and crystallinity. Amylose content was highest in NES (22.85 %), followed by NSP (21.05 %) and NCS (19.28 %). Following dual modification, a significant reduction in amylose content was observed in ultrasonic-assisted acetylated starches. Morphological analysis revealed granular aggregation, surface changes, and the formation of pores and cracks. X-ray diffraction (XRD) patterns demonstrated that NSP and NES starches exhibited major peaks characteristic of C-type starches, while NCS starches displayed an A-type pattern. Following ultrasound-assisted acetylation, the crystalline structures of all starches remained largely unchanged, although relative crystallinity slightly decreased compared to native starches. The oil absorption capacity and tap density of NES increased with dual modification, suggesting enhanced hydrophobicity. These findings highlight the potential of dual modification to improve starch properties for industrial applications, including confectionery, edible films, tablet binders, and encapsulation.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.