Emerging trends and challenges in thermal interface materials: A comprehensive perspective from fundamentals to applications

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akbar Bashir , Muhammad Maqbool , Ali Usman , Umer Younis , Abdul Zeeshan Khan , Ziqi Li , Chen Liu , Da-Zhu Chen , Shu-Lin Bai
{"title":"Emerging trends and challenges in thermal interface materials: A comprehensive perspective from fundamentals to applications","authors":"Akbar Bashir ,&nbsp;Muhammad Maqbool ,&nbsp;Ali Usman ,&nbsp;Umer Younis ,&nbsp;Abdul Zeeshan Khan ,&nbsp;Ziqi Li ,&nbsp;Chen Liu ,&nbsp;Da-Zhu Chen ,&nbsp;Shu-Lin Bai","doi":"10.1016/j.mser.2025.100968","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal interface materials (TIMs) are essential for efficient thermal management in modern electronics, reducing interfacial thermal resistance (ITR) and ensuring effective heat dissipation. Among the emerging two-dimensional (2D) materials, hexagonal boron nitride (h-BN) has gained considerable attention as a frontrunner due to its remarkable thermal conductivity (TC), robust chemical stability, and exceptional mechanical strength. This review provides an extensive overview of thermal conductance principles, highlighting state-of-the-art TC measurement techniques, and the factors influencing TIM performance. It delves into innovative fabrication strategies, focusing on the synthesis of boron nitride nanosheets (BNNS) and the design of three-dimensional (3D) interconnected, vertically aligned BN structures. These advanced methods facilitate the creation of continuous thermal pathways, significantly improving both in-plane and through-plane heat transfer. By overcoming critical performance bottlenecks, these techniques position BN-based TIMs at the forefront of thermal management solutions. Furthermore, the review explores their potential applications across high-performance sectors such as electronic packaging, battery thermal regulation, and wearable electronics domains where efficient heat dissipation is indispensable. In conclusion, this review not only identifies key research gaps but also provides strategic insights for advancing scalable, high-performance BN-based TIMs, ultimately positioning them as cornerstone components for next-generation thermal management technologies.</div></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"164 ","pages":"Article 100968"},"PeriodicalIF":31.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X25000452","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal interface materials (TIMs) are essential for efficient thermal management in modern electronics, reducing interfacial thermal resistance (ITR) and ensuring effective heat dissipation. Among the emerging two-dimensional (2D) materials, hexagonal boron nitride (h-BN) has gained considerable attention as a frontrunner due to its remarkable thermal conductivity (TC), robust chemical stability, and exceptional mechanical strength. This review provides an extensive overview of thermal conductance principles, highlighting state-of-the-art TC measurement techniques, and the factors influencing TIM performance. It delves into innovative fabrication strategies, focusing on the synthesis of boron nitride nanosheets (BNNS) and the design of three-dimensional (3D) interconnected, vertically aligned BN structures. These advanced methods facilitate the creation of continuous thermal pathways, significantly improving both in-plane and through-plane heat transfer. By overcoming critical performance bottlenecks, these techniques position BN-based TIMs at the forefront of thermal management solutions. Furthermore, the review explores their potential applications across high-performance sectors such as electronic packaging, battery thermal regulation, and wearable electronics domains where efficient heat dissipation is indispensable. In conclusion, this review not only identifies key research gaps but also provides strategic insights for advancing scalable, high-performance BN-based TIMs, ultimately positioning them as cornerstone components for next-generation thermal management technologies.
热界面材料的新兴趋势和挑战:从基础到应用的综合视角
热界面材料(TIMs)对于现代电子产品的高效热管理、降低界面热阻(ITR)和确保有效散热至关重要。在新兴的二维(2D)材料中,六方氮化硼(h-BN)由于其卓越的导热性(TC),强大的化学稳定性和卓越的机械强度而成为备受关注的领跑者。这篇综述提供了热导原理的广泛概述,突出了最先进的热导测量技术,以及影响热导性能的因素。它深入研究了创新的制造策略,重点是氮化硼纳米片(BNNS)的合成和三维(3D)互连,垂直排列的BN结构的设计。这些先进的方法促进了连续热通道的创建,显著改善了平面内和平面内的传热。通过克服关键的性能瓶颈,这些技术将基于bn的TIMs置于热管理解决方案的最前沿。此外,本文还探讨了它们在高性能领域的潜在应用,如电子封装、电池热调节和可穿戴电子领域,这些领域的高效散热是必不可少的。总之,本综述不仅确定了关键的研究差距,而且为推进可扩展、高性能的基于bn的TIMs提供了战略见解,最终将其定位为下一代热管理技术的基石组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信