{"title":"Neutrophil-derived exosomal S100A8 aggravates lung injury in sepsis by inducing pyroptosis","authors":"Xinxin Li , Wei Zhou , Liangliang Zhou, Yingbin Li, Xufeng Wu, Jianjun Chen","doi":"10.1016/j.molimm.2025.03.003","DOIUrl":null,"url":null,"abstract":"<div><div>Acute lung injury (ALI) is a common and life-threatening complication in patients with sepsis, with pro-inflammatory cell pyroptosis playing a crucial role in the associated organ damage. In this study, we aimed to identify potential therapeutic targets. Utilizing the GEO database (GSE232753), we analyzed the differentially expressed genes in the peripheral blood of healthy individuals and sepsis patients, identifying the significantly upregulated gene S100A8. Subsequently, we constructed a septic ALI model using lipopolysaccharide (LPS). Notably, S100A8 was highly expressed not only in serum and bronchoalveolar lavage fluid (BALF) but also in neutrophil exosomes. We then co-incubated BEAS-2B cells with neutrophil exosomes that were either treated or untreated with LPS. Cell proliferation activity was assessed using the CCK-8 assay, cell death was evaluated through propidium iodide (PI) staining, and the changes in pyroptosis indicators were detected via Western blot and ELISA. To further validate that LPS-induced neutrophil exosomes promote BEAS-2B cell pyroptosis through the delivery of S100A8, we conducted additional experiments involving the addition of S100A8 protein alone or S100A8 antibody in conjunction with neutrophil exosome treatment, followed by relevant assessments. Moreover, <em>in vivo</em> validation was also performed. Mechanistically, we revealed that S100A8 induces pyroptosis in BEAS-2B cells through the TLR4 signaling pathway. In conclusion, our findings provide new promising targets for the treatment of septic ALI.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"181 ","pages":"Pages 29-39"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016158902500063X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) is a common and life-threatening complication in patients with sepsis, with pro-inflammatory cell pyroptosis playing a crucial role in the associated organ damage. In this study, we aimed to identify potential therapeutic targets. Utilizing the GEO database (GSE232753), we analyzed the differentially expressed genes in the peripheral blood of healthy individuals and sepsis patients, identifying the significantly upregulated gene S100A8. Subsequently, we constructed a septic ALI model using lipopolysaccharide (LPS). Notably, S100A8 was highly expressed not only in serum and bronchoalveolar lavage fluid (BALF) but also in neutrophil exosomes. We then co-incubated BEAS-2B cells with neutrophil exosomes that were either treated or untreated with LPS. Cell proliferation activity was assessed using the CCK-8 assay, cell death was evaluated through propidium iodide (PI) staining, and the changes in pyroptosis indicators were detected via Western blot and ELISA. To further validate that LPS-induced neutrophil exosomes promote BEAS-2B cell pyroptosis through the delivery of S100A8, we conducted additional experiments involving the addition of S100A8 protein alone or S100A8 antibody in conjunction with neutrophil exosome treatment, followed by relevant assessments. Moreover, in vivo validation was also performed. Mechanistically, we revealed that S100A8 induces pyroptosis in BEAS-2B cells through the TLR4 signaling pathway. In conclusion, our findings provide new promising targets for the treatment of septic ALI.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.