Tandem radiative cooling with latent thermal energy storage for enhanced passive cooling and thermal shock resistance

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Zuoxin Hu, Xinru Yang, Yu Qiu
{"title":"Tandem radiative cooling with latent thermal energy storage for enhanced passive cooling and thermal shock resistance","authors":"Zuoxin Hu,&nbsp;Xinru Yang,&nbsp;Yu Qiu","doi":"10.1016/j.solmat.2025.113565","DOIUrl":null,"url":null,"abstract":"<div><div>Radiative cooling and latent thermal energy storage, requiring no additional energy consumption, are recognized as promising strategies for thermal management. However, the limited theoretical cooling power and strict weather condition requirements of radiative cooling, coupled with the high solar energy absorption of latent thermal energy storage, hinder their practical applications in thermal shock resistance. Here, a tandem passive cooler, combining radiative cooling and latent thermal energy storage, is presented to achieve the dual functionalities of passive cooling and thermal shock resistance. Specifically, the radiative cooling performance of this cooler is enabled by its high solar reflectivity (0.928) and high infrared emissivity (0.947), while its efficient isothermal heat release and absorption ensure temperature stability and high thermal energy storage. Consequently, by overcoming the limitations of both radiative cooling and latent heat thermal energy storage, this tandem passive cooler achieves a maximum temperature reduction of 5.37 °C and an average passive cooling temperature of 3.01 °C, enabling effective radiative cooling. Furthermore, this cooler reduces the maximum temperature of a heated silicon wafer by 27.56 °C compared to radiative cooling alone under thermal shock situations, demonstrating superior thermal shock resistance. Upon cessation of the thermal shock, the solidified latent thermal energy storage materials release their stored energy, mitigating excess heat and preventing overcooling of electronic devices, thereby ensuring the stable operation of electronic systems. This strategy offers a promising path to efficient thermal management under extreme temperature fluctuations, significantly expanding the practical applications of radiative cooling and latent thermal energy storage technologies.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"286 ","pages":"Article 113565"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825001667","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Radiative cooling and latent thermal energy storage, requiring no additional energy consumption, are recognized as promising strategies for thermal management. However, the limited theoretical cooling power and strict weather condition requirements of radiative cooling, coupled with the high solar energy absorption of latent thermal energy storage, hinder their practical applications in thermal shock resistance. Here, a tandem passive cooler, combining radiative cooling and latent thermal energy storage, is presented to achieve the dual functionalities of passive cooling and thermal shock resistance. Specifically, the radiative cooling performance of this cooler is enabled by its high solar reflectivity (0.928) and high infrared emissivity (0.947), while its efficient isothermal heat release and absorption ensure temperature stability and high thermal energy storage. Consequently, by overcoming the limitations of both radiative cooling and latent heat thermal energy storage, this tandem passive cooler achieves a maximum temperature reduction of 5.37 °C and an average passive cooling temperature of 3.01 °C, enabling effective radiative cooling. Furthermore, this cooler reduces the maximum temperature of a heated silicon wafer by 27.56 °C compared to radiative cooling alone under thermal shock situations, demonstrating superior thermal shock resistance. Upon cessation of the thermal shock, the solidified latent thermal energy storage materials release their stored energy, mitigating excess heat and preventing overcooling of electronic devices, thereby ensuring the stable operation of electronic systems. This strategy offers a promising path to efficient thermal management under extreme temperature fluctuations, significantly expanding the practical applications of radiative cooling and latent thermal energy storage technologies.

Abstract Image

串联辐射冷却与潜热储能增强被动冷却和抗热冲击
辐射冷却和潜热蓄能,不需要额外的能源消耗,被认为是有前途的热管理策略。然而,辐射冷却有限的理论冷却功率和严格的天气条件要求,加上潜热蓄能对太阳能的高吸收量,阻碍了其在抗热震方面的实际应用。本文提出了一种结合辐射冷却和潜热储能的串联被动冷却器,以实现被动冷却和抗热震的双重功能。具体而言,该冷却器的辐射冷却性能得益于其高太阳反射率(0.928)和高红外发射率(0.947),同时其高效的等温放热和吸热保证了温度稳定性和高热能储存。因此,通过克服辐射冷却和潜热热能存储的限制,该串联被动冷却器实现了5.37°C的最大降温和3.01°C的平均被动冷却温度,实现了有效的辐射冷却。此外,在热冲击情况下,与单独的辐射冷却相比,该冷却器可将加热硅片的最高温度降低27.56°C,显示出卓越的热冲击性能。在热冲击停止后,固化的潜热储能材料释放其储存的能量,减轻了电子设备的余热,防止了电子设备的过冷,从而保证了电子系统的稳定运行。该策略为极端温度波动下的高效热管理提供了一条有前途的途径,极大地扩展了辐射冷却和潜热储能技术的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信