Umami and saltiness enhancements of textured pea proteins by combining protease- and glutaminase-catalyzed reactions

IF 6.2 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Kiyota Sakai , Nickolas Broches , Keita Okuda , Masamichi Okada , Shotaro Yamaguchi
{"title":"Umami and saltiness enhancements of textured pea proteins by combining protease- and glutaminase-catalyzed reactions","authors":"Kiyota Sakai ,&nbsp;Nickolas Broches ,&nbsp;Keita Okuda ,&nbsp;Masamichi Okada ,&nbsp;Shotaro Yamaguchi","doi":"10.1016/j.crfs.2025.101022","DOIUrl":null,"url":null,"abstract":"<div><div>Plant-based meat analogs (PBMAs) have attracted attention owing to their various advantages, however, their taste limits their application, requiring improvement of the umami and saltiness levels while meeting clean-label requirements. Enzymatic treatments for food processing are effective strategies for developing clean-label food products because enzymes are not considered food additives. In this study, we aimed to enhance the umami and saltiness intensity of PBMA patties by combining protease- and glutaminase-catalyzed reactions. For the production of extrudates to construct PBMA patties, enzymatically hydrolyzed pea proteins (eHPP) were produced via enzyme catalysis combinations, followed by the preparation of eHPP-mixed textured pea protein (eTPP) from eHPP and starch. Sensory evaluation revealed that the umami, kokumi, and saltiness levels of the eTPP-based patties containing 0.5% NaCl were significantly higher than those of the control patties containing 0.5% NaCl. Notably, the eTPP-based patties exhibited a 20% salt reduction. By screening for saltiness-enhancing amino acids and peptides released from eTPP-based patties in artificial saliva, the combination of Glu, Arg, Lys, and the separated peptide 3 was determined important in enhancing the saltiness intensity of NaCl. Moreover, it was revealed that the saltiness-enhancing peptide 3 may be a Maillard-induced peptide, based on the Lys residues in Glu-Gly-Lys-Gly and 5-hydroxymethylfurfural condensed from Glucose in starch during the extrusion process. Our findings suggest that the combination of proteases and glutaminases could be an attractive approach to enhance the umami and saltiness levels of PBMA products while meeting clean-label requirements.</div></div>","PeriodicalId":10939,"journal":{"name":"Current Research in Food Science","volume":"10 ","pages":"Article 101022"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Food Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266592712500053X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-based meat analogs (PBMAs) have attracted attention owing to their various advantages, however, their taste limits their application, requiring improvement of the umami and saltiness levels while meeting clean-label requirements. Enzymatic treatments for food processing are effective strategies for developing clean-label food products because enzymes are not considered food additives. In this study, we aimed to enhance the umami and saltiness intensity of PBMA patties by combining protease- and glutaminase-catalyzed reactions. For the production of extrudates to construct PBMA patties, enzymatically hydrolyzed pea proteins (eHPP) were produced via enzyme catalysis combinations, followed by the preparation of eHPP-mixed textured pea protein (eTPP) from eHPP and starch. Sensory evaluation revealed that the umami, kokumi, and saltiness levels of the eTPP-based patties containing 0.5% NaCl were significantly higher than those of the control patties containing 0.5% NaCl. Notably, the eTPP-based patties exhibited a 20% salt reduction. By screening for saltiness-enhancing amino acids and peptides released from eTPP-based patties in artificial saliva, the combination of Glu, Arg, Lys, and the separated peptide 3 was determined important in enhancing the saltiness intensity of NaCl. Moreover, it was revealed that the saltiness-enhancing peptide 3 may be a Maillard-induced peptide, based on the Lys residues in Glu-Gly-Lys-Gly and 5-hydroxymethylfurfural condensed from Glucose in starch during the extrusion process. Our findings suggest that the combination of proteases and glutaminases could be an attractive approach to enhance the umami and saltiness levels of PBMA products while meeting clean-label requirements.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Food Science
Current Research in Food Science Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
3.20%
发文量
232
审稿时长
84 days
期刊介绍: Current Research in Food Science is an international peer-reviewed journal dedicated to advancing the breadth of knowledge in the field of food science. It serves as a platform for publishing original research articles and short communications that encompass a wide array of topics, including food chemistry, physics, microbiology, nutrition, nutraceuticals, process and package engineering, materials science, food sustainability, and food security. By covering these diverse areas, the journal aims to provide a comprehensive source of the latest scientific findings and technological advancements that are shaping the future of the food industry. The journal's scope is designed to address the multidisciplinary nature of food science, reflecting its commitment to promoting innovation and ensuring the safety and quality of the food supply.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信