A study on the effects of lignocellulosic biomass components on the interactions and thermal conductivity of stearic acid: Molecular dynamics simulation

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Mingyang Sun , Lin Lin , Huishuang Di , Yanhui Feng
{"title":"A study on the effects of lignocellulosic biomass components on the interactions and thermal conductivity of stearic acid: Molecular dynamics simulation","authors":"Mingyang Sun ,&nbsp;Lin Lin ,&nbsp;Huishuang Di ,&nbsp;Yanhui Feng","doi":"10.1016/j.ijheatmasstransfer.2025.126932","DOIUrl":null,"url":null,"abstract":"<div><div>Lignocellulosic biomass, with its sustainability, wide availability, and low cost, has become an ideal choice for supporting phase change materials (PCMs) and has been widely applied in various fields. Since lignocellulosic biomass mainly consists of three components, cellulose, hemicellulose, and lignin, and these components have distinct effects on the thermal properties of composite PCMs, this study uses stearic acid (SA) as a model substance and employs molecular dynamics simulations to systematically investigate the interactions between these components and SA and their impact on thermal conductivity. By analyzing the radial distribution function, radius of gyration, mean squared displacement, diffusion coefficient, and the binding energies between cellulose, hemicellulose, lignin, and SA, the study reveals the different roles each component plays in the adsorption of SA and elucidates the key mechanisms underlying the differences in the loading capacity of lignocellulosic biomass in composite PCMs. The results show that cellulose plays a critical role in the loading of SA, with a binding energy of -230.7 J/mol, significantly higher than that of hemicellulose and lignin. In addition, hemicellulose exhibits outstanding performance in enhancing the thermal conductivity of composite PCMs. Specifically, the thermal conductivity of the SA/hemicellulose system is 0.28 W/(m·K), which is 22 % higher than that of the SA/cellulose system and 47 % higher than that of the SA/lignin system. This study provides an important theoretical foundation for optimizing the design and application of lignocellulosic biomass-based composite PCMs.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"244 ","pages":"Article 126932"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001793102500273X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulosic biomass, with its sustainability, wide availability, and low cost, has become an ideal choice for supporting phase change materials (PCMs) and has been widely applied in various fields. Since lignocellulosic biomass mainly consists of three components, cellulose, hemicellulose, and lignin, and these components have distinct effects on the thermal properties of composite PCMs, this study uses stearic acid (SA) as a model substance and employs molecular dynamics simulations to systematically investigate the interactions between these components and SA and their impact on thermal conductivity. By analyzing the radial distribution function, radius of gyration, mean squared displacement, diffusion coefficient, and the binding energies between cellulose, hemicellulose, lignin, and SA, the study reveals the different roles each component plays in the adsorption of SA and elucidates the key mechanisms underlying the differences in the loading capacity of lignocellulosic biomass in composite PCMs. The results show that cellulose plays a critical role in the loading of SA, with a binding energy of -230.7 J/mol, significantly higher than that of hemicellulose and lignin. In addition, hemicellulose exhibits outstanding performance in enhancing the thermal conductivity of composite PCMs. Specifically, the thermal conductivity of the SA/hemicellulose system is 0.28 W/(m·K), which is 22 % higher than that of the SA/cellulose system and 47 % higher than that of the SA/lignin system. This study provides an important theoretical foundation for optimizing the design and application of lignocellulosic biomass-based composite PCMs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信