Geometric interpretation of the vanishing Lie Bracket for two-dimensional rough vector fields

IF 1.7 2区 数学 Q1 MATHEMATICS
Rebucci A., Zizza M.
{"title":"Geometric interpretation of the vanishing Lie Bracket for two-dimensional rough vector fields","authors":"Rebucci A.,&nbsp;Zizza M.","doi":"10.1016/j.jfa.2025.110919","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove that if <span><math><mi>X</mi><mo>,</mo><mi>Y</mi></math></span> are continuous, Sobolev vector fields with bounded divergence on the real plane and <span><math><mo>[</mo><mi>X</mi><mo>,</mo><mi>Y</mi><mo>]</mo><mo>=</mo><mn>0</mn></math></span>, then their flows commute. In particular, we improve the previous result of <span><span>[13]</span></span>, where the authors require the additional assumption of the weak Lie differentiability on one of the two flows. We also discuss possible extensions to the BV setting.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 1","pages":"Article 110919"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001016","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that if X,Y are continuous, Sobolev vector fields with bounded divergence on the real plane and [X,Y]=0, then their flows commute. In particular, we improve the previous result of [13], where the authors require the additional assumption of the weak Lie differentiability on one of the two flows. We also discuss possible extensions to the BV setting.
二维粗糙向量场的消失李支架的几何解释
本文证明了如果X,Y是连续的,实平面上有界散度的Sobolev向量场,且[X,Y]=0,则它们的流可交换。特别地,我们改进了[13]的先前结果,其中作者要求在两个流中的一个流上附加弱李可微性的假设。我们还讨论了对BV设置的可能扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信