{"title":"Solar-Driven additive Manufacturing: Design and development of a novel sustainable fabrication process","authors":"Angshuman Hazoary , Manish Panwar , Atul Singh Rajput , Sajan Kapil","doi":"10.1016/j.solener.2025.113387","DOIUrl":null,"url":null,"abstract":"<div><div><em>Additive Manufacturing</em> (AM) is revolutionizing industries by enabling layer-by-layer fabrication of complex components. Among AM techniques, <em>Laser Powder Bed Fusion</em> (<em>LPBF</em>) is widely used but is energy-intensive, limiting its sustainability. This study explores the potential of concentrated solar energy as an alternative heat source for sintering <em>Thermoplastic Polyurethane</em> (<em>TPU</em>) in a solar-powered 3D printing process. A custom-designed solar 3D printer, equipped with stepper motors and an Arduino UNO for precise control, was utilized to evaluate critical process parameters such as feed rate, hatch spacing, and layer thickness. The results indicate that feed rate and hatch spacing are pivotal to energy density, directly influencing sintering quality. Optimal sintering occurred at feed rates between 100–200 mm/min, which provided sufficient energy for uniform layer fusion, balancing surface finish and mechanical strength. Larger feed rates resulted in incomplete sintering and weaker parts, while a hatch spacing of 1.67 mm offered efficient pass binding with reduced build time. The study successfully demonstrated the fabrication of multilayer <em>TPU</em> structures using solar energy, achieving mechanical properties comparable to conventional <em>LPBF</em> techniques. This solar-powered approach underscores the potential for integrating renewable energy into additive manufacturing, offering a sustainable alternative to laser-based systems. Future refinements, such as dynamic solar tracking and real-time parameter adjustments, could further enhance its industrial viability. By leveraging renewable energy, this research represents a significant step toward eco-friendly manufacturing solutions, reducing energy consumption and carbon footprint while maintaining high-quality outputs.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"291 ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X25001501","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Additive Manufacturing (AM) is revolutionizing industries by enabling layer-by-layer fabrication of complex components. Among AM techniques, Laser Powder Bed Fusion (LPBF) is widely used but is energy-intensive, limiting its sustainability. This study explores the potential of concentrated solar energy as an alternative heat source for sintering Thermoplastic Polyurethane (TPU) in a solar-powered 3D printing process. A custom-designed solar 3D printer, equipped with stepper motors and an Arduino UNO for precise control, was utilized to evaluate critical process parameters such as feed rate, hatch spacing, and layer thickness. The results indicate that feed rate and hatch spacing are pivotal to energy density, directly influencing sintering quality. Optimal sintering occurred at feed rates between 100–200 mm/min, which provided sufficient energy for uniform layer fusion, balancing surface finish and mechanical strength. Larger feed rates resulted in incomplete sintering and weaker parts, while a hatch spacing of 1.67 mm offered efficient pass binding with reduced build time. The study successfully demonstrated the fabrication of multilayer TPU structures using solar energy, achieving mechanical properties comparable to conventional LPBF techniques. This solar-powered approach underscores the potential for integrating renewable energy into additive manufacturing, offering a sustainable alternative to laser-based systems. Future refinements, such as dynamic solar tracking and real-time parameter adjustments, could further enhance its industrial viability. By leveraging renewable energy, this research represents a significant step toward eco-friendly manufacturing solutions, reducing energy consumption and carbon footprint while maintaining high-quality outputs.
期刊介绍:
Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass