Ferrocene-MOFs: Optimizing OER Kinetics for Water Splitting

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Aling Zhou, Jiasui Huang, Lixia Wang, Shifan Zhang, Zhiyang Huang, Tayirjan Taylor Isimjan*, Xiulin Yang* and Dandan Cai*, 
{"title":"Ferrocene-MOFs: Optimizing OER Kinetics for Water Splitting","authors":"Aling Zhou,&nbsp;Jiasui Huang,&nbsp;Lixia Wang,&nbsp;Shifan Zhang,&nbsp;Zhiyang Huang,&nbsp;Tayirjan Taylor Isimjan*,&nbsp;Xiulin Yang* and Dandan Cai*,&nbsp;","doi":"10.1021/acs.inorgchem.5c0033410.1021/acs.inorgchem.5c00334","DOIUrl":null,"url":null,"abstract":"<p >Optimizing the adsorption and desorption kinetics of oxygen evolution reaction (OER) is crucial for efficient overall water splitting. Herein, we report a series of porous ferrocene-based metal–organic framework (MFc-MOF, M = Co, Ni, Fe, Mn) nanoflowers featuring a close π–π stacking lattice structure as model catalysts, and explore the structure–activity relationship. Operando electrochemical impedance spectroscopy implies that the synthesized CoFc-MOF@NF facilitates intermediate adsorption and desorption. It exhibits an ultralow overpotential of 189 mV at 10 mA cm<sup>–2</sup> and maintains stability for 250 h. In an overall water splitting device, when CoFc-MOF@NF serves as the anode, it yields a significantly lower cell voltage than commercial RuO<sub>2</sub> and shows excellent stability at 100 mA cm<sup>–2</sup> for 100 h. In situ Raman spectroscopy reveals that the CoFc-MOF@NF surface transforms into CoFeOOH, the OER-active species, while preserving the MOF framework. The inner MOF’s ferrocene units act as efficient electron-transfer mediators. These findings highlight CoFc-MOF@NF’s potential as a leading catalyst for sustainable water splitting hydrogen production, combining high catalytic activity, rapid kinetics, and robust stability. This work presents a new approach to balance activity and stability in MOF-based OER catalysts.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"64 9","pages":"4680–4688 4680–4688"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.inorgchem.5c00334","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing the adsorption and desorption kinetics of oxygen evolution reaction (OER) is crucial for efficient overall water splitting. Herein, we report a series of porous ferrocene-based metal–organic framework (MFc-MOF, M = Co, Ni, Fe, Mn) nanoflowers featuring a close π–π stacking lattice structure as model catalysts, and explore the structure–activity relationship. Operando electrochemical impedance spectroscopy implies that the synthesized CoFc-MOF@NF facilitates intermediate adsorption and desorption. It exhibits an ultralow overpotential of 189 mV at 10 mA cm–2 and maintains stability for 250 h. In an overall water splitting device, when CoFc-MOF@NF serves as the anode, it yields a significantly lower cell voltage than commercial RuO2 and shows excellent stability at 100 mA cm–2 for 100 h. In situ Raman spectroscopy reveals that the CoFc-MOF@NF surface transforms into CoFeOOH, the OER-active species, while preserving the MOF framework. The inner MOF’s ferrocene units act as efficient electron-transfer mediators. These findings highlight CoFc-MOF@NF’s potential as a leading catalyst for sustainable water splitting hydrogen production, combining high catalytic activity, rapid kinetics, and robust stability. This work presents a new approach to balance activity and stability in MOF-based OER catalysts.

Abstract Image

二茂铁- mof:优化水裂解OER动力学
优化析氧反应(OER)的吸附和解吸动力学是实现高效整体水分解的关键。在此,我们报道了一系列具有紧密π -π堆积晶格结构的多孔二茂铁基金属有机骨架(MFc-MOF, M = Co, Ni, Fe, Mn)纳米花作为模型催化剂,并探讨了结构-活性关系。电化学阻抗谱分析表明,合成的CoFc-MOF@NF有利于中间介质的吸附和解吸。它在10 mA cm-2下具有189 mV的超低过电位,并保持250小时的稳定性。在整体水分解装置中,当CoFc-MOF@NF作为阳极时,它产生的电池电压明显低于商用RuO2,并且在100 mA cm-2下具有100小时的优异稳定性。原位拉曼光谱显示,CoFc-MOF@NF表面转化为CoFeOOH,这是一种oo2活性物质,同时保留了MOF框架。内部MOF的二茂铁单元作为有效的电子转移介质。这些发现突出了CoFc-MOF@NF作为可持续水裂解制氢的主要催化剂的潜力,结合了高催化活性,快速动力学和强大的稳定性。本研究提出了一种平衡mof基OER催化剂活性和稳定性的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信