{"title":"stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics","authors":"Guangsheng Zou, Qunlun Shen, Limin Li, Shuqin Zhang","doi":"10.1093/nar/gkaf158","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics technology has revolutionized our understanding of cellular systems by capturing RNA transcript levels in their original spatial context. Single-cell spatial transcriptomics (scST) offers single-cell resolution expression level and precise spatial information of RNA transcripts, while it has a limited capacity for simultaneously detecting a wide range of RNA transcripts, hindering its broader applications. Characterizing the whole transcriptome level and comprehensively annotating cell types represent two significant challenges in scST applications. Despite several proposed methods for one or both tasks, their performance remains inadequate. In this work, we introduce stAI, a deep learning-based model designed to address both missing gene imputation and cell-type annotation for scST data. stAI leverages a joint embedding for the scST and the reference scRNA-seq data with two separate encoder-decoder modules. Both the imputation and annotation are performed within the latent space in a supervised manner, utilizing scRNA-seq data to guide the processes. Experiments for datasets generated from diverse platforms with varying numbers of measured genes were conducted and compared with the updated methods. The results demonstrate that stAI can predict the unmeasured genes, especially the marker genes, with much higher accuracy, and annotate the cell types, including those of small size, with high precision.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"12 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf158","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spatial transcriptomics technology has revolutionized our understanding of cellular systems by capturing RNA transcript levels in their original spatial context. Single-cell spatial transcriptomics (scST) offers single-cell resolution expression level and precise spatial information of RNA transcripts, while it has a limited capacity for simultaneously detecting a wide range of RNA transcripts, hindering its broader applications. Characterizing the whole transcriptome level and comprehensively annotating cell types represent two significant challenges in scST applications. Despite several proposed methods for one or both tasks, their performance remains inadequate. In this work, we introduce stAI, a deep learning-based model designed to address both missing gene imputation and cell-type annotation for scST data. stAI leverages a joint embedding for the scST and the reference scRNA-seq data with two separate encoder-decoder modules. Both the imputation and annotation are performed within the latent space in a supervised manner, utilizing scRNA-seq data to guide the processes. Experiments for datasets generated from diverse platforms with varying numbers of measured genes were conducted and compared with the updated methods. The results demonstrate that stAI can predict the unmeasured genes, especially the marker genes, with much higher accuracy, and annotate the cell types, including those of small size, with high precision.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.