stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Guangsheng Zou, Qunlun Shen, Limin Li, Shuqin Zhang
{"title":"stAI: a deep learning-based model for missing gene imputation and cell-type annotation of spatial transcriptomics","authors":"Guangsheng Zou, Qunlun Shen, Limin Li, Shuqin Zhang","doi":"10.1093/nar/gkaf158","DOIUrl":null,"url":null,"abstract":"Spatial transcriptomics technology has revolutionized our understanding of cellular systems by capturing RNA transcript levels in their original spatial context. Single-cell spatial transcriptomics (scST) offers single-cell resolution expression level and precise spatial information of RNA transcripts, while it has a limited capacity for simultaneously detecting a wide range of RNA transcripts, hindering its broader applications. Characterizing the whole transcriptome level and comprehensively annotating cell types represent two significant challenges in scST applications. Despite several proposed methods for one or both tasks, their performance remains inadequate. In this work, we introduce stAI, a deep learning-based model designed to address both missing gene imputation and cell-type annotation for scST data. stAI leverages a joint embedding for the scST and the reference scRNA-seq data with two separate encoder-decoder modules. Both the imputation and annotation are performed within the latent space in a supervised manner, utilizing scRNA-seq data to guide the processes. Experiments for datasets generated from diverse platforms with varying numbers of measured genes were conducted and compared with the updated methods. The results demonstrate that stAI can predict the unmeasured genes, especially the marker genes, with much higher accuracy, and annotate the cell types, including those of small size, with high precision.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"12 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf158","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial transcriptomics technology has revolutionized our understanding of cellular systems by capturing RNA transcript levels in their original spatial context. Single-cell spatial transcriptomics (scST) offers single-cell resolution expression level and precise spatial information of RNA transcripts, while it has a limited capacity for simultaneously detecting a wide range of RNA transcripts, hindering its broader applications. Characterizing the whole transcriptome level and comprehensively annotating cell types represent two significant challenges in scST applications. Despite several proposed methods for one or both tasks, their performance remains inadequate. In this work, we introduce stAI, a deep learning-based model designed to address both missing gene imputation and cell-type annotation for scST data. stAI leverages a joint embedding for the scST and the reference scRNA-seq data with two separate encoder-decoder modules. Both the imputation and annotation are performed within the latent space in a supervised manner, utilizing scRNA-seq data to guide the processes. Experiments for datasets generated from diverse platforms with varying numbers of measured genes were conducted and compared with the updated methods. The results demonstrate that stAI can predict the unmeasured genes, especially the marker genes, with much higher accuracy, and annotate the cell types, including those of small size, with high precision.
stAI:基于深度学习的空间转录组学缺失基因归约和细胞类型注释模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信