Xanthi-Lida Katopodi, Oguzhan Begik, Eva Maria Novoa
{"title":"Toward the use of nanopore RNA sequencing technologies in the clinic: challenges and opportunities","authors":"Xanthi-Lida Katopodi, Oguzhan Begik, Eva Maria Novoa","doi":"10.1093/nar/gkaf128","DOIUrl":null,"url":null,"abstract":"RNA molecules have garnered increased attention as potential clinical biomarkers in recent years. While short-read sequencing and quantitative polymerase chain reaction have been the primary methods for quantifying RNA abundance, they typically fail to capture critical post-transcriptional regulatory elements, such as RNA modifications, which are often dysregulated in disease contexts. A promising cutting-edge technique sequencing method that addresses this gap is direct RNA sequencing, offered by Oxford Nanopore Technologies, which can simultaneously capture both RNA abundance and modification information. The rapid advancements in this platform, along with growing evidence of dysregulated RNA species in biofluids, presents a compelling clinical opportunity. In this review, we discuss the challenges and the emerging opportunities for the adoption of nanopore RNA sequencing technologies in the clinic, highlighting their potential to revolutionize personalized medicine and disease monitoring.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"18 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkaf128","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA molecules have garnered increased attention as potential clinical biomarkers in recent years. While short-read sequencing and quantitative polymerase chain reaction have been the primary methods for quantifying RNA abundance, they typically fail to capture critical post-transcriptional regulatory elements, such as RNA modifications, which are often dysregulated in disease contexts. A promising cutting-edge technique sequencing method that addresses this gap is direct RNA sequencing, offered by Oxford Nanopore Technologies, which can simultaneously capture both RNA abundance and modification information. The rapid advancements in this platform, along with growing evidence of dysregulated RNA species in biofluids, presents a compelling clinical opportunity. In this review, we discuss the challenges and the emerging opportunities for the adoption of nanopore RNA sequencing technologies in the clinic, highlighting their potential to revolutionize personalized medicine and disease monitoring.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.