{"title":"Theoretical mechanisms and experimental validation of hard vs soft carbon coatings for enhanced silicon anode performance","authors":"Peng Zhao, Cai Liu, Boyuan Liu, Keren Lu, Haiyan Jing, Xifeng Xia, Mingzhu Xia, Shuai Han, Daniel Mandler, Wu Lei, Qiubo Guo, Qingli Hao","doi":"10.1016/j.cej.2025.161385","DOIUrl":null,"url":null,"abstract":"Silicon (Si)-based anodes are finding their niche in high-energy Li-ion batteries due to their overwhelming lead on capacity compared to graphite anodes. However, the low conductivity and drastic volume expansion during the lithiation process block their large-scale applications. Although the carbon coating methods have been investigated extensively and acknowledged as the most effective strategies, so far, their mechanisms are still only roughly attributed to the high conductivity and stability of the amorphous carbon shells. Especially the unique functional characteristics of hard carbon (HC) and soft carbon (SC) remain elusive, thus restricting the full utilization of Si. In this perspective, under the guidance of theoretical calculation and the assistance of characterization, we analyzed the various attributes of ionic-electronic conductivity, electrolyte selective permeation, and mechanical stability of the HC and SC coatings during the de-/lithiation processes of electrodes. It is concluded that the SC-coated Si demonstrates superior comprehensive electrochemical performance compared to the HC-coated Si. This work offers a comprehensive insight into the correlation between the physicochemical properties of various carbon coatings and the electrochemical performance of their composites. By elucidating these relationships, it paves the way for the rational design, selection, and optimization of carbon-coated Si-based materials, facilitating their application across diverse scenarios in grid-scale energy storage.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"31 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.161385","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon (Si)-based anodes are finding their niche in high-energy Li-ion batteries due to their overwhelming lead on capacity compared to graphite anodes. However, the low conductivity and drastic volume expansion during the lithiation process block their large-scale applications. Although the carbon coating methods have been investigated extensively and acknowledged as the most effective strategies, so far, their mechanisms are still only roughly attributed to the high conductivity and stability of the amorphous carbon shells. Especially the unique functional characteristics of hard carbon (HC) and soft carbon (SC) remain elusive, thus restricting the full utilization of Si. In this perspective, under the guidance of theoretical calculation and the assistance of characterization, we analyzed the various attributes of ionic-electronic conductivity, electrolyte selective permeation, and mechanical stability of the HC and SC coatings during the de-/lithiation processes of electrodes. It is concluded that the SC-coated Si demonstrates superior comprehensive electrochemical performance compared to the HC-coated Si. This work offers a comprehensive insight into the correlation between the physicochemical properties of various carbon coatings and the electrochemical performance of their composites. By elucidating these relationships, it paves the way for the rational design, selection, and optimization of carbon-coated Si-based materials, facilitating their application across diverse scenarios in grid-scale energy storage.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.