Chunyu Wang, Boyue Gao, Kai Xue, Wenbin Wang, Jun Zhao, Ruixue Bai, Tinghao Yun, Zhiwei Fan, Mengling Yang, Zhaoming Zhang, Zhitao Zhang, Xuzhou Yan
{"title":"Stretchable [2]rotaxane-bridged MXene films applicable for electroluminescent devices.","authors":"Chunyu Wang, Boyue Gao, Kai Xue, Wenbin Wang, Jun Zhao, Ruixue Bai, Tinghao Yun, Zhiwei Fan, Mengling Yang, Zhaoming Zhang, Zhitao Zhang, Xuzhou Yan","doi":"10.1126/sciadv.adt8262","DOIUrl":null,"url":null,"abstract":"<p><p>Titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<i><sub>X</sub></i>) MXene has prominent mechanical properties and electrical conductivity. However, fabricating high-performance macroscopic films is challenging, as weak interlayer interactions limit their mechanical performance. Here, we introduce [2]rotaxane, a mechanically interlocked molecule, to enhance MXene films. Compared to pure MXene (fracture strain: 4.6%, toughness: 0.6 MJ/m<sup>3</sup>), [2]rotaxane-bridged MXene (RBM) films achieve record-high strain (20.0%) and toughness (11.9 MJ/m<sup>3</sup>) with only 3.6% [2]rotaxane by weight. Additionally, RBM films endure 500 stretch cycles (0 to 15% strain) with stable and reversible resistance alterations, making them ideal for stretchable electrodes. Notably, RBM films enable stretchable electroluminescent devices with reliable operation under 20% elongation and customizable luminescent patterns. This innovative use of mechanically interlocked molecules to cross-link MXene platelets advances MXene films and other two-dimensional materials in stretchable electronics.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 10","pages":"eadt8262"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt8262","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Titanium carbide (Ti3C2TX) MXene has prominent mechanical properties and electrical conductivity. However, fabricating high-performance macroscopic films is challenging, as weak interlayer interactions limit their mechanical performance. Here, we introduce [2]rotaxane, a mechanically interlocked molecule, to enhance MXene films. Compared to pure MXene (fracture strain: 4.6%, toughness: 0.6 MJ/m3), [2]rotaxane-bridged MXene (RBM) films achieve record-high strain (20.0%) and toughness (11.9 MJ/m3) with only 3.6% [2]rotaxane by weight. Additionally, RBM films endure 500 stretch cycles (0 to 15% strain) with stable and reversible resistance alterations, making them ideal for stretchable electrodes. Notably, RBM films enable stretchable electroluminescent devices with reliable operation under 20% elongation and customizable luminescent patterns. This innovative use of mechanically interlocked molecules to cross-link MXene platelets advances MXene films and other two-dimensional materials in stretchable electronics.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.