The ability of Salmonella enterica subsp. enterica strains to form biofilms on abiotic surfaces and their susceptibility to selected essential oil components.

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Liliana Pérez-Lavalle, Anabela Borges, Inês B Gomes, Elena Carrasco, Antonio Valero, Manuel Simões
{"title":"The ability of Salmonella enterica subsp. enterica strains to form biofilms on abiotic surfaces and their susceptibility to selected essential oil components.","authors":"Liliana Pérez-Lavalle, Anabela Borges, Inês B Gomes, Elena Carrasco, Antonio Valero, Manuel Simões","doi":"10.1093/lambio/ovaf032","DOIUrl":null,"url":null,"abstract":"<p><p>The ability of Salmonella enterica subsp. enterica to persist and form biofilms on different surfaces can constitute a source of food contamination, being an issue of global concern. The objective of this study was to understand the biofilm formation profile of 14 S. enterica strains among different serovars and sources and to evaluate the ability of essential oil (EO) components (carveol, citronellol, and citronellal) to disinfect the biofilms formed on stainless steel and polypropylene surfaces. All the strains were able to form biofilms with counts between 5.34 to 6.78 log CFU cm-2. Then, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EO components were evaluated on two selected strains. All compounds inhibited the growth of Salmonella Typhimurium (strain 1; MIC = 800-1000 µg ml-1) and Salmonella Enteritidis (strain 5; MIC = 400-1000 µg ml-1) and only carveol showed bactericidal activity against strains 1 and 5 (MBC = 1200 µg ml-1). Biofilms were exposed to the EO components at 10 × MIC for 30 min and polypropylene surfaces were more difficult to disinfect showing reductions between 0.9 and <1.2 log CFU cm-2. In general, the S. enterica biofilms demonstrated a significant tolerance to disinfection, demonstrating their high degree of recalcitrance on food processing surfaces.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf032","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability of Salmonella enterica subsp. enterica to persist and form biofilms on different surfaces can constitute a source of food contamination, being an issue of global concern. The objective of this study was to understand the biofilm formation profile of 14 S. enterica strains among different serovars and sources and to evaluate the ability of essential oil (EO) components (carveol, citronellol, and citronellal) to disinfect the biofilms formed on stainless steel and polypropylene surfaces. All the strains were able to form biofilms with counts between 5.34 to 6.78 log CFU cm-2. Then, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of EO components were evaluated on two selected strains. All compounds inhibited the growth of Salmonella Typhimurium (strain 1; MIC = 800-1000 µg ml-1) and Salmonella Enteritidis (strain 5; MIC = 400-1000 µg ml-1) and only carveol showed bactericidal activity against strains 1 and 5 (MBC = 1200 µg ml-1). Biofilms were exposed to the EO components at 10 × MIC for 30 min and polypropylene surfaces were more difficult to disinfect showing reductions between 0.9 and <1.2 log CFU cm-2. In general, the S. enterica biofilms demonstrated a significant tolerance to disinfection, demonstrating their high degree of recalcitrance on food processing surfaces.

肠炎沙门氏菌亚种在非生物表面形成生物膜的能力及其对精油成分的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Applied Microbiology
Letters in Applied Microbiology 工程技术-生物工程与应用微生物
CiteScore
4.40
自引率
4.20%
发文量
225
审稿时长
3.3 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信