Pravini S Fernando, Yen-Chi Chen, Janice M Baek, Ying Diao
{"title":"Chiral Assemblies of π-Conjugated Molecules: Fundamentals, Processing Strategies, and Applications in (Opto)Electronics.","authors":"Pravini S Fernando, Yen-Chi Chen, Janice M Baek, Ying Diao","doi":"10.1146/annurev-chembioeng-100722-104224","DOIUrl":null,"url":null,"abstract":"<p><p>Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization. We particularly emphasize supramolecular assembly, such as through the formation of chiral liquid crystal phases. Next, we summarize processing strategies to control chiral symmetry breaking, exploiting external fields such as flow, magnetic fields, and templates. The final section discusses interactions between chiral molecular assemblies with circularly polarized (CP) light and electronic spin and their applications in CP light detectors, CP-spin-organic light-emitting diodes, CP displays, and spintronic devices based on the chirality-induced spin selectivity effect.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-100722-104224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Chirality, a fundamental attribute of asymmetry, pervades in both nature and functional soft materials. In chiral material systems design, achieving global symmetry breaking of building blocks during assembly, with or without the aid of additives, has emerged as a promising strategy across domains including chiral sensing, electronics, photonics, spintronics, and biomimetics. We first introduce the fundamental aspects of chirality, including its structural basis and symmetry-breaking mechanisms considering free energy minimization. We particularly emphasize supramolecular assembly, such as through the formation of chiral liquid crystal phases. Next, we summarize processing strategies to control chiral symmetry breaking, exploiting external fields such as flow, magnetic fields, and templates. The final section discusses interactions between chiral molecular assemblies with circularly polarized (CP) light and electronic spin and their applications in CP light detectors, CP-spin-organic light-emitting diodes, CP displays, and spintronic devices based on the chirality-induced spin selectivity effect.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.