{"title":"Non-Image-Forming Functions of Intrinsically Photosensitive Retinal Ganglion Cells.","authors":"Jianjun Meng, Xiaodan Huang, Chaoran Ren, Tian Xue","doi":"10.1146/annurev-neuro-112723-035532","DOIUrl":null,"url":null,"abstract":"<p><p>Life on this planet is heavily influenced by light, the most critical external environmental factor. Mammals perceive environmental light mainly through three types of photoreceptors in the retina-rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs). The latest discovered ipRGCs are particularly sensitive to short-wavelength light and have a unique phototransduction mechanism, compared with rods and cones. Piles of evidence suggest that ipRGCs mediate a series of light-regulated physiological functions such as circadian rhythms, sleep, metabolic homeostasis, mood, development, and higher cognitions, collectively known as non-image-forming vision. Recent advances in systems neuroscience, driven by modern neural circuit tools, have illuminated the structure and function of the neural pathways connecting the retina to subcortical regions, highlighting their involvement in an array of non-image-forming functions. Here we review key discoveries and recent progress regarding the neural circuit mechanisms employed by ipRGCs to regulate diverse biological functions and provide insights into unresolved scientific questions in this area.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-112723-035532","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Life on this planet is heavily influenced by light, the most critical external environmental factor. Mammals perceive environmental light mainly through three types of photoreceptors in the retina-rods, cones, and intrinsically photosensitive retinal ganglion cells (ipRGCs). The latest discovered ipRGCs are particularly sensitive to short-wavelength light and have a unique phototransduction mechanism, compared with rods and cones. Piles of evidence suggest that ipRGCs mediate a series of light-regulated physiological functions such as circadian rhythms, sleep, metabolic homeostasis, mood, development, and higher cognitions, collectively known as non-image-forming vision. Recent advances in systems neuroscience, driven by modern neural circuit tools, have illuminated the structure and function of the neural pathways connecting the retina to subcortical regions, highlighting their involvement in an array of non-image-forming functions. Here we review key discoveries and recent progress regarding the neural circuit mechanisms employed by ipRGCs to regulate diverse biological functions and provide insights into unresolved scientific questions in this area.
期刊介绍:
The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience.
The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.