{"title":"Universal Framework for Multiconfigurational DFT.","authors":"Mickael G Delcey","doi":"10.1021/acs.jctc.4c01687","DOIUrl":null,"url":null,"abstract":"<p><p>Strong correlation remains a significant challenge for DFT with no satisfying solutions found yet within the standard Kohn-Sham framework. Instead, for decades, a number of different approaches have been suggested to combine the accuracy of multiconfigurational methods with the efficiency of DFT. In this article, we demonstrate that many of these methods are or would be significantly improved by being reformulated as variants of multiconfigurational pair-density functional theory (MC-PDFT). This work presents the first implementation of these methods within the recently proposed variational formulation of MC-PDFT. It also provides for the first time a systematic comparison of their accuracy across representative examples of strongly correlated systems. By analyzing their accuracy and formal properties, we provide design guidelines to inform the development of future functionals.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01687","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Strong correlation remains a significant challenge for DFT with no satisfying solutions found yet within the standard Kohn-Sham framework. Instead, for decades, a number of different approaches have been suggested to combine the accuracy of multiconfigurational methods with the efficiency of DFT. In this article, we demonstrate that many of these methods are or would be significantly improved by being reformulated as variants of multiconfigurational pair-density functional theory (MC-PDFT). This work presents the first implementation of these methods within the recently proposed variational formulation of MC-PDFT. It also provides for the first time a systematic comparison of their accuracy across representative examples of strongly correlated systems. By analyzing their accuracy and formal properties, we provide design guidelines to inform the development of future functionals.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.